Почти все математики признали доказательство ученого, но, по всей видимости, самолюбие Хейлса было сильно задето сомнением коллег по поводу того, что при доказательстве ему пришлось воспользоваться компьютерными вычислениями. После подтверждения гипотезы Кеплера он отошел от геометрии, которая сделала его знаменитым, и занялся проектом формальной верификации доказательств. Хейлс предвидит появление математики будущего, отличной от современной, и работает над ее созданием. Он считает, что математические доказательства, независимо от того, как они выполнены – с помощью ли компьютера или с помощью карандаша и бумаги, – стали настолько сложными и взаимозависимыми, что мы больше не можем быть полностью уверенными в их корректности. Классификация конечных простых групп – к настоящему времени завершившийся проект, важной частью которого стал выполненный Конвеем анализ решетки Лича, – состоит из сотен работ сотен авторов. В итоге их труд занимает около десяти тысяч страниц, и не приходится утверждать, что хотя бы один человек из ныне живущих понимает его целиком. Так как мы можем быть уверены в его правильности?
По мнению Хейлса, у нас нет иного выбора, кроме как начать все с самого начала, перестроив всю совокупность математических знаний в пределах формальной структуры, которую можно будет проверять с помощью компьютера. Коль скоро код, проверяющий формальные доказательства, сам поддается проверке (с точки зрения Хейлса, эта цель вполне достижима), мы можем навсегда избавиться от споров вокруг проблемы, с которой столкнулся в свое время Хейлс, – действительно ли доказательство является доказательством. Что будет дальше? Возможно, на следующем этапе появятся компьютеры, способные конструировать доказательства или даже
Если так и произойдет, наступит ли конец математики? Безусловно. В том случае, если машины догонят, а затем и превзойдут человека во всех областях мыслительной деятельности; если они начнут использовать нас в качестве рабов, скота или игрушек, как предсказывают некоторые самые смелые футуристы, – тогда да, математике придет конец, как, собственно, и всему остальному. Но если исключить такой вариант, то математика, должно быть, выживет. По крайней мере хочется так думать. Если на то пошло, математика уже десятки лет обращается за помощью к компьютерам. Многие вычисления, которые в прошлом мы отнесли бы к категории исследований, сейчас считаются не более творческими или достойными похвалы, чем сложение ряда десятизначных чисел. Если что-то может сделать ваш ноутбук, значит, это что-то уже не математика. Тем не менее данное обстоятельство не оставило математиков без работы. Мы смогли сохранить свои позиции при каждодневно растущем доминировании компьютерной сферы. Мы продолжаем работать на опережение, подобно киногероям, обгоняющим огненный шар.
Если даже искусственный интеллект будущего сможет взять на себя б
Код Хэмминга довольно хорош, но наверняка найдется кто-то, рассчитывающий, что ему удастся создать код более совершенный. В конце концов, в коде Хэмминга присутствует определенная избыточность: даже во времена перфолент и механических реле компьютеры были настолько надежны, что почти все блоки из семи бит передавались без искажений. Этот код кажется слишком консервативным: мы вполне могли бы обойтись включением меньшего количества защитных битов в свои сообщения. И мы действительно можем это сделать – доказательством тому служит знаменитая теорема Шеннона. Например, если ошибки происходят с частотой одна ошибка на тысячу бит, Шеннон утверждает, что есть коды, которые сделают каждое сообщение всего на 1,2 % длиннее, чем то же сообщение без кода. Более того, делая базовые блоки все более длинными, можно найти коды, обеспечивающие заданную скорость и удовлетворяющие любым требованиям к надежности, какими бы жесткими они ни были.