Примерно в V столетии до нашей эры один из представителей пифагорейской школы сделал потрясающее открытие:
Это повлекло за собой неразбериху. Вы наверняка помните, что пифагорейцы были крайне своеобразными людьми. Их философия представляла собой рагу из суждений, часть которых мы назвали бы математикой, часть – религией и оставшуюся часть – психическим расстройством. Пифагорейцы были убеждены, что нечетные числа символизируют добро, тогда как четные – зло, что по ту сторону Солнца находится планета Антихтон (Антиземля, Противоземля), а также что нельзя есть бобы, как писали некоторые, потому, что в них находятся души умерших. Ходили слухи, будто Пифагор разговаривал с домашним скотом (он велел животным не есть бобы), а также что он был одним из немногих древних греков, носивших штаны{22}[35].
Математика пифагорейцев была неразрывно связана с их идеологией. Легенда (которая, возможно, не совсем соответствует действительности, но дает правильное представление о пифагорейском стиле) гласит, что первым пифагорейцем, открывшим иррациональность квадратного корня из 2, был человек по имени Гиппас; в награду за доказательство этой отвратительной теоремы соратники бросили его в море, где он и утонул.
Но теорему не утопишь. Преемники пифагорейцев, такие как Евклид и Архимед, понимали, что нужно просто закатать рукава и начать все измерять, даже если придется ради этого выйти за пределы высокой стены, окружавшей цветущий сад целых чисел, столь милый их сердцу. Никто не знал, можно ли выразить площадь круга с помощью одних только целых чисел[36]. Однако колеса необходимо строить, а силосные башни заполнять[37], а значит, такие измерения должны быть выполнены.
Первоначальную идею предложил Евдокс Книдский, а Евклид включил ее в 12-ю книгу «Начал». Однако именно Архимед довел их дело до конца. В наши дни мы называем этот подход методом исчерпывания. А начинается он вот с чего.
Изображенный на этом рисунке квадрат называется «вписанный квадрат»: каждый его угол только касается окружности, но не выходит за ее границы. Зачем это делать? Потому что круг – нечто загадочное и пугающее, тогда как с квадратом все просто и ясно. Если у вас есть квадрат, длина стороны которого равна
Вписанный квадрат можно разбить на четыре треугольника, каждый из которых представляет собой не что иное, как равнобедренный прямоугольный треугольник, который мы только что нарисовали[38]. Следовательно, площадь такого квадрата в четыре раза больше площади треугольника. Треугольник в свою очередь – это то, что получится, если взять квадрат 1 x 1 и разрезать его пополам, как бутерброд с тунцом.
Площадь такого бутерброда равна 1 x 1 = 1, значит, площадь каждого треугольника равна 1/2 , а площадь вписанного квадрата составляет четыре раза по 1/2 , то есть 2.
Кстати, предположим вы
Вписанный квадрат полностью находится в пределах окружности. Если его площадь равна 2, площадь круга должна составлять
Теперь давайте нарисуем другой квадрат.
Этот квадрат, который обозначается термином «описанный квадрат», также касается окружности всего в четырех точках, но теперь окружность находится внутри него. Длина сторон такого квадрата равна 2 единицам, значит, его площадь составляет 4 единицы. Следовательно, теперь мы знаем, что площадь круга равна максимум 4 единицам.