Читаем Java: руководство для начинающих (ЛП) полностью

Inside f(int): 10 Inside f(double): 10.1 Inside f(byte): 99 Inside f(int): 10 Inside f(double): 11.5 В данной версии программы используется вариант метода f с параметром типа byte. Так, если при вызове метода f ему передается значение типа byte, вызывается вариант метода f (byte) и автоматическое приведение к типу int не производится. Перегрузка методов представляет собой механизм воплощения полиморфизма, т.е. способ реализации в Java принципа “один интерфейс — множество методов”. Для того чтобы стёбю понятнее, как и для чего это делается, необходимо принять во внимание следующее соображение: в языках программирования, не поддерживающих перегрузку методов, каждый метод должен иметь уникальное имя. Но в ряде случаев требуется выполнять одну и ту же последовательность операций над разными типами данных. В качестве примера рассмотрим функцию, определяющую абсолютное значение. В языках, не поддерживающих перегрузку методов, приходится создавать три или более варианта данной функции с именами, отличающимися хотя бы одним символом. Например, в языке С функция abs возвращает абсолютное значение числа типа int, функция labs — абсолютное значение числа типа long, а функция f abs применяется к значению с плавающей точкой. А поскольку в С не поддерживается перегрузка, то каждая из функций должна иметь свое собственное имя, несмотря на то, что все они выполняют одинаковые действия. Это приводит к неоправданному усложнению процесса написания программ. Разработчику приходится не только представлять себе действия, выполняемые функциями, но и помнить все три их имени. Такая ситуация не возникает в Java, потому что все методы, вычисляющие абсолютное значение, имеют одно и то же имя. В стандартной библиотеке Java для вычисления абсолютного значения предусмотрен метод abs . Его перегрузка осуществляется в классе Math для обработки значений всех числовых типов. Решение о том, какой именно вариант метода abs должен быть вызван, исполняющая система Java принимает, исходя из типа аргумента. Главная ценность перегрузки заключается в том, что она обеспечивает доступ к связанным вместе методам по общему имени. Следовательно, имя abs обозначает общее выполняемое действие, а компилятор сам выбирает конкретный вариант метода по обстоятельствам. Благодаря полиморфизму несколько имен сводятся к одному. Несмотря на всю простоту рассматриваемого здесь примера, продемонстрированный в нем принцип полиморфизма можно расширить, чтобы выяснить, каким образом перегрузка помогает справляться с более сложными ситуациями в программировании. Когда метод перегружается, каждый его вариант может выполнять какое угодно действие. Для установления взаимосвязи между перегружаемыми методами не существует какого-то твердого правила, но с точки зрения правильного стиля программирования перегрузка методов подразумевает подобную взаимосвязь. Следовательно, использовать одно и то же имя для несвязанных друг с другом методов не следует, хотя это и возможно. Например, имя sqr можно было бы выбрать для методов, возвращающих квадрат и квадратный корень числа с плавающей точкой. Но ведь это принципиально разные операции. Такое применение перегрузки методов противоречит ее первоначальному назначению. На практике перегружать следует только тесно связанные операции. ## Перегрузка конструкторов Как и методы, конструкторы также могут перегружаться. Это дает возможность конструировать объекты самыми разными способами. В качестве примера рассмотрим следующую программу:

// Демонстрация перегрузки конструкторов, class MyClass { int х; // Конструкторы перегружаются разными способами. MyClass { System.out.println("Inside MyClass."); x = 0 ; } MyClass(int i) { System.out.println("Inside MyClass(int) . ") ; x = i; } MyClass(double d) { System.out.println("Inside MyClass(double)."); x = (int) d; } MyClass(int i, int j) { System.out.println("Inside MyClass(int, int)."); x = i * j; }

}

class OverloadConsDemo { public static void main(String args[]) { MyClass tl = new MyClass; MyClass t2 = new MyClass(88); MyClass t3 = new MyClass(17.23); MyClass t4 = new MyClass(2, 4); System.out.println("tl.x: " + tl.x); System.out.println("t2.x: " + t2.x); System.out.println("t3.x: " + t3.x); System.out.println("t4.x: " + t4.x); }

} В результате выполнения этой программы получается следующий результат:

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT