Несколько лет тому назад наш постоянный читатель и автор Денис Воронин из подмосковного города Лобня прислал письмо, в котором обосновывал возможность сделать любой предмет прозрачным. «Как известно, любое твердое тело состоит из атомов и молекул, закрепленных в кристаллической решетке, — писал Денис. — Однако между узлами этой решетки достаточно свободного места, чтобы излучение могло свободно проникать сквозь объект любой толщины»… Далее Денис выдвинул предположение, что такое излучение должно соседствовать со всем известным видимым светом.
Денис как в воду глядел. Ныне такое излучение открыто. Называется оно терагерцовым и располагается на шкале диапазонов по соседству с инфракрасным, то есть тепловым. Далее следуют видимый свет, ультрафиолет и рентгеновское излучение.
Интересная деталь: если видимый свет отражается поверхностью большинства предметов, жесткое рентгеновское излучение попросту проламывается сквозь кристаллическую решетку, то терагерцовые лучи обладают способностью огибать на своем пути препятствия.
Занимая полосу электромагнитного спектра между светом и радиоизлучениями и имея собственную частоту около одного триллиона колебаний в секунду, они удивительным образом сочетают в себе полезные качества излучений соседних диапазонов. Как и радиоволны, терагерцовые колебания легко проникают сквозь некоторые твердые материалы. При этом их можно сфокусировать, как свет, чтобы получить четкое изображение, и заглянуть с их помощью в глубь живого организма, не нанося ему ущерба.
Кожа словно из серебра, одежда — прозрачная, равно как и все вокруг. Сквозь стены и крышу видна черная тьма дневного неба… Так выглядит мир в терагерцовом диапазоне.
Почему разговор о терагерцовом диапазоне зашел только сейчас, в начале XXI века, почему исследователи не освоили его раньше? Ведь они давно уже изучают электромагнитные колебания. Одна из причин состоит в том, что испытанные исследовательские технологии в данном случае малоприменимы.
Радиоизлучение, как известно, возникает за счет колебаний, скачков электронов, которые мечутся по цепи туда-сюда, совершая от сотен тысяч до сотен миллиардов колебаний в секунду. Однако, чтобы излучать электромагнитные волны в терагерцовом диапазоне, электроны должны скакать гораздо быстрее. Для этого нужно невероятно тщательно проектировать электрические цепи, иначе колебания попросту затухнут.
Схожие проблемы подстерегают и тех, кто рассчитывает построить терагерцовый лазер. В лазерах, напомним, используют свойства материалов генерировать излучение определенной длины волны. Если, скажем, возбудить газ, воздействуя на него световым лучом или электрическим разрядом, его электроны начнут поглощать энергию, перескакивая с одного энергетического уровня на другой, более высокий. Затем они возвращают избыток энергии, испуская фотоны. Однако, чтобы изготовить терагерцовый лазер, необходим материал, энергетические уровни атомов которого расположены очень близко друг к другу — примерно в 100 раз ближе, чем в тех, что используются, квантовых генераторах. Найти его не так-то просто.
В общем, не случайно специалисты называют эту малоизученную область спектра терагерцовой «дырой».
Один из возможных подходов в освоении терагерцового диапазона — создать необходимый материал, а не искать его в природе.
Некоторое время назад ученые выяснили, что «длину» энергетического перехода электрона можно менять, если задержать его в тонком слое полупроводникового материала, например, в арсениде галлия. Параметры перехода зависят от толщины слоя.
Теоретически можно создавать «нереальные» энергетические уровни. Надстроенные друг над другом, они образуют «суперрешетку», или синтетический кристалл, который действует как материал с искусственными энергетическими переходами. Его-то и можно использовать в качестве рабочего тела лазера.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное