В первой половине XIX века математики начали задумываться над тем, что постулаты евклидовой геометрии не являются априори истинными и что отрицание этих постулатов, в особенности постулата о параллельности прямых, может привести к созданию принципиально новой геометрии, столь же корректной, как и геометрия Евклида. Это было продемонстрировано в работах Николая Ивановича Лобачевского (1792—1856) и Яноша Бойяи (1802—1860). Этого же мнения придерживался великий Гаусс, однако он действовал излишне осмотрительно и поделился своими идеями лишь с немногими соратниками, из-за чего принятие неевклидовой геометрии в научных кругах происходило не так быстро, как могло бы. Процесс создания неевклидовой геометрии завершил Бернхард Риман (1826—1866). Риман в своем докладе «О гипотезах, лежащих в основании геометрии», который он сделал 10 июня 1854 года с целью получить пост преподавателя в Гёттингенском университете, представил общую теорию геометрии, простиравшуюся намного дальше, чем частные случаи, описанные Лобачевским и Бойяи, которые были получены отрицанием постулата о параллельности прямых. Риман сделал основой своей геометрии утверждение, над которым другие математики размышляли в течение 50 лет: постулат о параллельности, равно как и любой другой постулат евклидовой геометрии, не является априори истинным в абсолютном пространстве, а, напротив, представляет собой эмпирический результат, полученный в процессе наблюдения той небольшой части пространства, что нас окружает. Спустя некоторое время после смерти Гаусса была опубликована его частная переписка, где он восхвалял новую геометрию предшественников Римана — Лобачевского и Бойяи. Если бы кто-то узнал о том, какой интерес и энтузиазм проявлял великий Гаусс по отношению к неевклидовой геометрии, это стало бы решающим толчком к ее широкому принятию.
Как следствие, это серьезно повлияло бы на вопросы, связанные с математической и логической строгостью. Корректность этих результатов, не проверенных эмпирическим путем, а доказанных строгими геометрическими рассуждениями, оставалась под сомнением. Таким образом, геометрия Евклида перестала быть неэмпирической дисциплиной, на основе которой с математической строгостью строились другие разделы математики. Ее место быстро заняла арифметика — раздел математики, изучающий числа и их свойства.
В этом смысле Карл Вейерштрасс (1815—1897) пересмотрел определение предела Коши и убрал из него геометрические элементы, в частности формулировки «бесконечно приближаются», «бесконечно уменьшаются» и «меньше любой заданной величины», заменив их арифметическими выражениями, в которых фигурировали величины эпсилон и дельта, используемые и сейчас: «Предел функции f(х) равен 1, когда x стремится к а, если для любого положительного ε > 0 существует другое положительное число δ > 0 такое, что для любой точки x, в которой определена данная функция, выполняется неравенство 0 < |f(x) — 1| < ε.
С конца 1850-х до конца 1880-х годов Вейерштрасс преподавал в Берлинском университете. Он не публиковал свои лекции, и данные им определения дошли до нас из конспектов его учеников. Начиная со второй половины XIX века Германия постепенно становилась мировым математическим центром, придя на смену Франции, что способствовало эффективному распространению анализа Вейерштрасса.
Заключение
Начиная с Эйлера и в особенности после того, как усилиями Коши и Вейерштрасса был выстроен фундамент анализа бесконечно малых, эта дисциплина стала ядром математического анализа. Функции, пределы, производные и интегралы — фундаментальные инструменты математического анализа. С их помощью великое множество физических, технических, экономических и даже медицинских задач можно свести к уравнениям, где будут одновременно использоваться функции, их производные и интегралы. Так, задачи поиска оптимальной формы крыла самолета, определения кровяного давления в венах и артериях организма или выявления роста раковых опухолей решаются с помощью уравнений такого типа.
Эти уравнения формулируются с использованием понятий математического анализа, в том числе анализа функций нескольких переменных, а также законов физики. Однако составить такие уравнения — это одно, а уметь решать их — совсем другое. Решения некоторых подобных уравнений были однозначно определены, уже когда Ньютон и Лейбниц создали анализ бесконечно малых, однако большинство из них настолько сложны, что и сегодня не существует способов их точного решения. Математический анализ также описывает методы приближенного и численного решения подобных уравнений, позволяющие найти их корни с определенной точностью. С появлением современных компьютеров в середине XX века в этой области математического анализа произошла революция.