Читаем Истина в пределе полностью

<p>Ньютон, Лейбниц и бесконечно малые</p>

Даже создатели математического анализа не приводили исчерпывающих доказательств открытых ими методов. И Ньютон, и Лейбниц осознавали недостаток логики в своих работах и пытались каждый по-своему если не устранить, то хотя бы смягчить этот недостаток.

Так, Ньютон попытался избежать использования бесконечно малых путем перехода к пределу, однако потерпел неудачу. Тем не менее его усилия стали источником вдохновения для Коши. Покажем, как следует понимать дробь 0/0, получаемую при h = 0 в выражении

необходимом для определения производной f(x) функции f в точке х. Здесь мы позволим себе небольшой анахронизм. Сам Ньютон никогда не использовал понятие производной функции, равно как и не использовал подобные обозначения, а вместо этого употреблял понятие «исчезающая величина». Таким образом, разность f(x + h) — f(x) и само число h будут исчезающими величинами: обе они «исчезают», когда h становится равным нулю. «Последним отношением исчезающих величин» он называл значение вышеуказанной дроби при h = 0. Очевидно, что Ньютон имеет в виду переход к пределу, когда говорит о «последнем отношении исчезающих величин», чтобы обосновать неопределенность 0/0, к которой сводится вышеприведенная дробь при h = 0. Однако он так и не дал этому методу строгого определения. Сам Ньютон осознавал этот недостаток и в объяснении прибегал к физическим аналогиям: «Вероятно, вы можете возразить, что последнего отношения исчезающих величин не существует, поскольку до того как величины исчезают, отношение не является последним, а когда величины исчезают, никакого отношения не существует. Однако, следуя этой же логике, можно отрицать, что тело, которое прибыло в определенную точку и остановилось в ней, не имеет последней скорости, поскольку до этого его скорость не была последней, а после того как тело прибыло в эту точку, его скорость равна нулю. Однако ответ на этот вопрос крайне прост. Под последней скоростью понимается скорость, с которой движется тело в самый момент прибытия, не раньше и не позже, то есть скорость, с которой тело прибыло в последнюю точку и с которой его движение прекратилось. Этим же образом под последним отношением следует понимать отношение величин не до того, как они исчезнут, и не после того, как они исчезнут, а отношение, при котором они исчезнут».

Бесконечно малые величины играли в математическом анализе Лейбница заметно большую роль. Например, они фигурировали в самом определении кривой, которым пользовался Лейбниц. Для Ньютона кривая была образована точкой в движении: «Полагаю математические величины не состоящими из очень малых частей, а описываемыми непрерывным движением. Кривые, таким образом, описываются и создаются не расположением частей, а непрерывным движением точек». Лейбниц же считал, что кривые состоят из отрезков прямой бесконечно малой длины: «Чтобы найти касательную, надо провести прямую, соединяющую две точки кривой, расположенных на бесконечно малом расстоянии, или продленную сторону многоугольника с бесконечным числом углов, который для нас равносилен кривой», — писал Лейбниц в 1684 году.

Понятие кривой еще более четко описывается в книге «Анализ бесконечно малых» маркиза Лопиталя (1696). Второй постулат книги звучит так: «Будем предполагать, что кривую линию можно считать состоящей из бесконечного числа бесконечно малых линий, или, что аналогично, многоугольником с бесконечным числом сторон, каждая из которых имеет бесконечно малую длину, а кривизна линии определяется углами между этими сторонами».

«Анализ бесконечно малых» маркиза Лопиталя, первая книга по анализу бесконечно малых Лейбница. 

Лейбниц объяснял использование бесконечно малых подобно своим предшественникам: «Выбираются столь большие или столь малые величины, чтобы ошибка была меньше данной, так что различия с методом Архимеда заключаются лишь в способе записи, но наш метод более соответствует духу изобретательства». Лейбниц попал в самую точку: в то время ученых больше интересовали открытия, а не доказательства.

ЭДМУНД ГАЛЛЕЙ, НЕВЕРУЮЩИЙ
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука