Читаем Истина в пределе полностью

<p>Взаимное признание заслуг, пусть и не вполне искреннее</p>

Хотя Ньютон первым открыл и описал свой вариант математического анализа, на 10 лет опередив Лейбница, последний опубликовал свои результаты раньше. В первой своей статье, опубликованной в 1684 году, Лейбниц не упоминает Ньютона, но говорит о нем во второй статье (1686 год): «Дабы не казалось, что я приписываю себе излишне много либо недооцениваю остальных, следует упомянуть в нескольких словах о том, что моей формуле я особенно обязан прославленным математикам нашего века в жанре геометрии. <…> Кроме того, светлейший математик Николас Меркатор из Гольштейна был первым, насколько мне известно, кто нашел квадратуру с помощью бесконечного ряда. Независимо от него это открытие совершил, а также улучшил его геометр величайшего дарования Исаак Ньютон, который, если бы дал нам ознакомиться с его мыслями, которые, насколько я понимаю, он имеет, то открыл бы нам новые пути к удивительным открытиям и научным трудам».

Ньютон упомянул Лейбница при первой же возможности. Эта возможность представилась ему в 1687 году, при публикации первого издания «Начал». Как известно, в «Началах» Ньютон предпочел использовать язык геометрии, подобно древним грекам. В кульминационные моменты спора он часто указывал, что использовал анализ флюксий для вывода значительной доли результатов, изложенных в «Началах», однако затем изложил их на языке геометрии.

Возможно, дело и правда обстояло так, как указывает Ньютон, но этому нет документальных подтверждений. Как неоднократно указывает Уайтсайд, рукописи, где, по словам Ньютона, с помощью анализа флюксий выводятся результаты, изложенные в «Началах», так и не были найдены. Тем не менее Вестфолл пишет: «Проблема, связанная с «Началами», заключается не в том, чтобы найти доказательства, полученные другим способом, а в том, чтобы обнаружить признаки математического анализа, скрытые за завесой геометрии».

Анализ флюксий Ньютона вообще не упоминается в «Началах», за исключением леммы II книги II, что мы уже указывали в главе 3. В этой лемме Ньютон вкратце излагает современные правила вычисления производной. Он приводит примечание к этой лемме, где цитирует Лейбница и явно заявляет права на создание математического анализа. Так Ньютон отреагировал на первую публикацию Лейбница, посвященную анализу бесконечно малых. Это примечание звучит следующим образом: «В письмах, которыми около десяти лет тому назад я обменивался с весьма искусным математиком Г.Г. Лейбницем, я ему сообщал, что я обладаю методою для определения максимумов и минимумов, проведения касательных и решения тому подобных вопросов, одинаково приложимою как для членов рациональных, так и для иррациональных, причем я ее скрыл, переставив буквы следующего предложения: «Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa» («Когда задано уравнение, содержащее любое число переменных количеств, найти флюксии, и наоборот»). Знаменитейший муж отвечал мне, что он также напал на такую методу, и сообщил мне свою методу, которая оказалась едва отличающейся от моей, и то только терминами и начертанием формул. Основа обоих метод содержится в этой лемме». Ньютон написал это примечание с целью заявить право первенства на открытие анализа, однако так как ранее он не публиковал ничего по этому вопросу, в отличие от Лейбница, а письма, которыми обменивались Ньютон и Лейбниц, были известны лишь узкому кругу его друзей, примечание было понято как знак того, что Ньютон признает за Лейбницем право первенства.

Французское издание «Метода флюксий», датированное 1740 годом. 

В конце 1691 года, спустя четыре года после выхода «Начал», в кругах, близких к Ньютону и Лейбницу, стали циркулировать слухи о том, чему именно Лейбниц научился у Ньютона. Так, Фатио де Дюилье писал Гюйгенсу: «Господин Ньютон, несомненно, является первооткрывателем дифференциального исчисления, так как оно было ему известно еще до того, как господин Лейбниц получил о нем первое представление. Более того, это представление он мог получить лишь после того, как увидел записи господина Ньютона. Поэтому я крайне удивлен тем, что господин Лейбниц не упоминает об этом в журнале Acta». Фатио вернулся к этой теме 5 февраля 1692 года: «Не сомневаюсь, что публикация писем [Epistolae prior и Epistolae posterior] повлечет за собой унижение для господина Лейбница, так как он опубликовал свои правила дифференциального исчисления лишь по прошествии достаточного времени после их получения и сделал это без упоминания о господине Ньютоне. Они были представлены в виде переделки того, что получил господин Ньютон, и если мы сравним их, то не сможем отделаться от мысли, что разница между ними такова же, как между совершенным оригиналом и грубой и несовершенной копией».

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука