Читаем Инженерная эвристика полностью

Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а всё расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями.

Активно развивается математическая теория так называемых размытых множеств, нечётко очерченных совокупностей объектов.

Анализ проблем неточности — это шаг на пути сближения логики с практикой обычного мышления. И можно предполагать, что он принесёт ещё многие интересные результаты (Ивин, 2009).

<p>Обсуждение на семинаре «Междисциплинарные исследования»</p>

С. Ёлкин. Я согласен с Ж. Жубером… интуитивно. Но ни разу не проверял истинность его утверждения! Давайте разделимся на два лагеря: защитников его утверждения и противников. И возьмем, какую-нибудь аксиому, ну например: «Через две точки можно провести только одну прямую». И теперь попробуем понять, как эта аксиома может исчезнуть, как мы её можем лишиться? Итак, высказывание Ж. Жубера — это факт или только поэтическое утверждение?

Д. Гаврилов. Этой аксиомы мы лишимся с утратой понятия прямой. Это идеальное понятие для гипотетического однородного неискривлённого пространства. Но прямых в реальности не существует. А раз нет прямых, нет и аксиомы о них.

С. Ёлкин. Речь не о том, что существует реально, а об однозначности понятий. «Лишите слова всякой неточности — и вы лишитесь даже аксиом». Что значит «лишите всякой неточности»? То есть сделайте точными! Однозначными! Точность и однозначность в данном случае синонимы. Что значит быть однозначным, то есть имеющим одно значение!

А. Трушечкин. Интересно! Иначе говоря, мы должны проверить, исчезает ли эта аксиома при исчезновении неточности в понятиях? А есть ли неточности в определении понятий «прямая» и «точка»? Обратимся к оригинальным определениям Евклида. Евклид определяет точку как «то, что не имеет частей», а прямую — как «длину без ширины». Действительно очень нечёткие понятия. В современной математике, например, не принято работать с такими нечёткими понятиями. Согласно более современной аксиоматике Гильберта и другим современным аксиоматикам геометрии, прямая и точка — это неопределяемые понятия.

Подход современной математики следующий: мы вводим понятия прямой и точки, но не определяем их, то есть не говорим, что есть точка и что есть прямая. Зато мы говорим, в какие отношения они могут вступать: точка может принадлежать прямой (соответственно, прямая — проходить через точку). Всё! Мы полностью абстрагировались от смысла понятий, мы просто указали формальные отношения между ними! Можно сказать, что математика занимается не столько самими объектами, сколько отношениями между ними!

Таким образом, в современной математике даже нельзя поставить вопрос, чётко или нечётко определены понятия прямой и точки — они вообще не определены! Кстати, и понятие «принадлежать» тоже не определено. Просто говорится, что прямая и точка могут вступать в такое отношение друг с другом. Полное абстрагирование от смысла, только работа с формальными отношениями.

С другой стороны, неопределяемые понятия не должны нас удивлять. К выводу об их существовании пришёл ещё Аристотель. Мы определяем одни понятия через другие, те понятия — через третьи и т. д. Рано или поздно цепочка должна закончиться. Она закончится на таких понятиях, которые мы уже не можем определить, а познаём интуитивно. Такие понятия Аристотель назвал «категориями».

Точка и прямая — безусловно, одни из подобных понятий. Мы их можем выразить немного другими словами, но это не есть определение в логическом смысле. Евклидово определение прямой как «длины без ширины» — это, видимо, именно дополнительное пояснение для нашей интуиции, а не логическое определение. Тогда сразу возникают вопросы, что такое «длина» и «ширина». Эти понятия уже сами связаны с геометрией, то есть с тем, что мы как раз и собираемся строить. Возникает замкнутый круг. Поэтому «длина без ширины» — это не логическое определение, а просто пояснение для нашей интуиции. Наверное, Евклид это понимал, особенно, если был знаком с трудами Аристотеля[102].

Неопределимы также и такие философские категории как «время», «пространство», «материя» и т. д. Это такие «первопонятия», кирпичики, которые мы познаём интуитивно, из опыта и на основе которых начинаем строить другие, более сложные понятия.

Евклид предпочёл дать какие-то пояснения понятиям «точка» и «прямая», а современная математика честно признаётся, что эти понятия неопределимы.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука