Когда мы говорим о генотипе и фенотипе — это такие крайние единого процесса реализации наследственной информации в индивидуальном развитии. Например, гладкая или морщинистая форма горошины, это ее фенотип. А генотип — это та специфическая последовательность нуклеотидов, которая в данных условиях определяет, что горошина будет гладкой или морщинистой. В 1999 году с менделевскими линиями гороха была проведена следующая работа. Участки хромосомы, отвечающие за форму горошины, были клонированы, секвенированы, и было установлены их особенности — различие последовательностей нуклеотидов — которые и определяли развитие гладкой или морщинистой формы горошины.
Обратите внимание, что форма горошины является конечным признаком, а формированию признака этого уровня предшествует проявление признака на многих предыдущих уровнях. Во-первых, это наличие (аллель 1) или отсутствие (аллель 2) олигосахарида, которое и приводит к той или иной форме горошины. Еще более глубоким уровнем проявления фенотипа является то, что имеется соответствующий белок (аллель 1), который необходим для синтеза олигосахарида или это тот же белок, но альтернативной структуры (аллель 2), при которой олигосахарид не образуется. Еще более глубоким признаком является РНК, с которой синтезируется этот белок. Эти РНК различны по последовательности нуклеотидов (аллели 1 и 2), что и делает различными соответствующие белки. А эти РНК различны, потому что транскрибируется с разных молекул ДНК, папиной и маминой, у которых последовательности нуклеотидов в данной позиции различны (аллели 1 и 2). Все это — проявление одного и того же фенотипа, последовательно реализуемого на каждом из уровней.
Мы имеем право говорить о фенотипе на каждом из этих многих уровней — от конкретных особенностей последовательности нуклеотидов ДНК до формы горошины. При этом, как только мы продвигаемся от ДНК выше, тем больше влияние условий окружающей среды. Например, возможность функционирования разных аллелей на уровне ДНК (транскрипция папиной и маминой копии гена) будет мало зависеть от температуры, а возможность функционирования тех же аллелей на уровне белка может критически зависеть от температуры. При некоторых температурах белок (например, аллель 1) будет работать, а другой (аллель 2) не будет работать. Как только мы выдвигаемся на более высокий уровень в реализации фенотипа, появляется больше возможностей для влияния окружающей среды на проявление признака.
И наоборот, чем ближе мы продвигаемся к генотипу, тем предсказуемее связь между генотипом и фенотипом. При идентификации человека в судебно-медицинской экспертизе чаще всего используются маркеры, которые различают одни и те же участки гомологичных (папины и мамины) хромосом. Обычно эти различия — микровставки в данном месте молекулы ДНК. Принцип метода таков. Мы можем размножить in vitro фрагмент молекулы ДНК в нужном месте хромосомы, например, с координатами от позиции N до позиции N+100. Этот фрагмент мы выбрали потому, что в нем у каждого человека в каждой хромосоме есть вставка, например, динуклеотид СА. В каждой хромосоме длина этой вставки может быть своя. Допустим, в одной хромосоме этот динуклеотид повторен в данном месте 10 раз, а в том же месте другой хромосомы — 15 раз. При размножении этого участка хромосомы мы получим фрагменты двух длин 100 +2*10=120 пар нуклеотидов и 100 + 2*15 = 130 пар нуклеотидов. Фрагменты каждого из этих размеров отличимы после их фракционирования электрофорезом в геле.
Пусть и папа и мама гетерозиготны по этому локусу, подобно гибридам первого поколения Менделевского моногибридного скрещивания. Обозначим их генотипы по характеристической длине размножаемых фрагментов ДНК — 120/130. Тогда их дети будут иметь такие генотипы 1 120/120 (гомозиготы по аллелю 120): 2 120/130 (гетерозиготы): 1 130/130 (гомозиготы по аллелю 130). Естественно, присутствие в образце фрагмента ДНК одной длины не влияет на возможность детекции фрагмента ДНК другой длины, то есть, используемые маркеры ко-доминантны. Они обе проявляются. Понятно, что здесь проявляются те же менделевские закономерности передачи и расщепления признаков, хотя в качестве признака мы использовали морфологию самой молекулы ДНК — различную длину фрагмента молекулы в данном месте хромосомы.
После переоткрытия законов Менделя выяснялось, что Мендель то в одном как бы как бы не прав, то в другом как бы не прав. Обнаруживались дополнительные обстоятельства, которые модифицировали проявление менделевских закономерностей.