Читаем Интерфейс: новые направления в проектировании компьютерных систем полностью

«нельзя путать понятие информации с понятием смысла…информация является мерой свободы выбора сообщения… Следует отметить, что при наличии только двух возможных сообщений утверждать, что какое-то сообщение передает какой-то объем [1 бит] информации, неправильно. Понятие информации не применимо к отдельным сообщениям (в отличие от понятия смыла), но применимо к ситуации в целом; при этом единица информации показывает, что в данной ситуации имеется некоторый объем свободы в выборе сообщения, который удобно обозначать как стандартный или единичный объем информации»

(Shannon и Weaver, 1963, с. 9).

Однако действия, которые совершает пользователь при выполнении задачи, можно с большей точностью смоделировать в виде процесса Маркова, в котором вероятность последующих действий зависит от уже совершенных пользователем действий. Тем не менее, для данного рассмотрения достаточно использовать упомянутые вероятности отдельных, единичных событий, при этом будем исходить из того, что все сообщения являются независимыми друг от друга и равновероятными.

Также можно вычислить количество информации, которое передается с помощью устройств, отличающихся от клавиатуры. Если экран дисплея разделен на две области – со словом «Да» в одной области и словом «Нет» – в другой, то один клик, совершенный в одной из областей, будет передавать 1 бит информации. Если имеется n равновероятных объектов, то нажатием на один из них сообщается \log_2 n бит информации. Если объекты имеют разные размеры, то количество информации, сообщаемой каждым из них, не изменяется, но увеличивается время перемещения ГУВ к более мелким объектам (далее мы покажем способ вычисления этого времени). Если объекты имеют разные вероятности, формула остается аналогичной той, которая была дана для случая ввода с клавиатуры разновероятных данных. Различие состоит только в том, что для нажатия клавиши может потребоваться 0.2 с. тогда как для нажатия кнопки, изображенной на экране, в среднем может потребоваться около 1.3 с (без учета времени перемещения руки пользователя с клавиатуры на ГУВ).

В случае голосового ввода информации его информационное содержание можно вычислить, если рассматривать речь как последовательность вводимых символов, а не как непрерывный поток определенного диапазона и продолжительности.

Данный подход к теории информации и ее связи с разработкой интерфейсов является упрощенным. Но даже в такой упрощенной форме, которую мы также использовали при рассмотрении модели GOMS, теория информации может дать нам общий критерий оценки качества интерфейса.

<p>4.3.1. Производительность интерфейса для Хола</p>

Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов.

Папирусы Рхинда, 1650 г. до н. э.

Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов.

Полезно подробно рассмотреть пример вычисления среднего количества информации, требуемого для некоего интерфейса. Для этого я снова использую пример интерфейса для перевода температур из одной шкалы в другую. В соответствии с условиями требуется, чтобы количество символов, вводимых в температурный преобразователь, равнялось в среднем 4. Кроме того, по условиям задачи десятичная точка используется однократно в 90 % вводимых данных, а в 10 % – вообще не встречается; знак минус появляется один раз в 25 % данных и совсем не встречается в остальных 75 % данных. Из соображений простоты, а также потому, что не требуется ответ с точностью до 1 %, я буду исходить из того, что все остальные цифры встречаются с одинаковой частотой, и не буду учитывать те 10 % данных, которые не содержат десятичной точки.

Требуется определить множество возможных вариантов ввода и их вероятности. Возможны 5 вариантов (d означает цифру):

1. -.dd

2. -d.d

3. .ddd

4. d.dd

5. dd.d

Первые два варианта встречаются в 12.5 % случаев, и количество каждого из них составляет 100. Каждый из последних трех вариантов встречается в 25 % случаев, и количество каждого из них составляет почти 1000.[24] Вероятность каждого из первых двух вариантов ввода составляет (0.125/100)=0.00125. Вероятность любого из последних трех вариантов ввода составляет (0.75/3000)=0.00025. Сумма вероятностей, как это и должно быть, составляет 1.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука