Читаем Инопланетяне и инопланетные общества. Руководство для писателя по созданию внеземных форм жизни (ЛП) полностью

В некоторых средах обитания зрение не особенно полезно, поскольку света не хватает, и/или они плохо проводят его. Во многих случаях в таких условиях слух работает лучше — и из-за того, что даже существам, которые полагаются в основном на зрение, иногда приходится оказываться в таких условиях, они, как правило, обладают ещё и достаточно хорошим слухом. Обычно дальность обзора в джунглях настолько невелика, что какого-то врага, которого вы можете увидеть, вы видите слишком поздно. Однако звуковые волны гораздо длиннее, чем световые, и распространяются, огибая препятствия, поэтому услышать что-либо можно задолго до того, как это можно будет увидеть. Если добавить такие усовершенствования, как парные уши и наружные ушные раковины сложной формы (как у нас), можно даже получить довольно чёткое представление о том, где находится источник звука. У ночных животных вроде некоторых пустынных лисиц наружные уши могут быть очень большими по той же причине, по которой очень велики астрономические телескопы: чтобы собрать как можно больше энергии и позволить своему обладателю слышать очень слабые звуки.

Наземные животные обычно используют относительно ограниченный диапазон звуковых частот, хотя точный выбранный диапазон значительно варьирует. У здоровых людей он составляет примерно от двадцати до двадцати тысяч герц; или примерно десять октав, поскольку повышение на октаву означает удвоение частоты. Это всё равно значительно больше, чем диапазон нашего зрительного восприятия, который составляет чуть меньше одной октавы. Обладание способностью воспринимать и различать такой широкий диапазон частот в какой-то степени компенсирует нашу неспособность слышать нюансы — то есть, образы, — которые мы различаем с помощью света. Мы также научились различать множество вспомогательных признаков звука — таких, как форма волны (которую мы воспринимаем как «качество тона») и вариации высоты тона и амплитуды. Это сделало его отличным способом передачи информации, поэтому многие животные приобрели также звуковоспроизводящие органы для передачи сигналов друг другу — и в некоторых случаях эти сигналы развиваются в язык.

У животных, мало использующих зрение, звуковое восприятие может быть развито ещё сильнее, иногда в форме, напоминающей форму использования нами света. Дельфины могут слышать и издавать звуки в гораздо более широком диапазоне частот, чем мы, — вероятно, до двухсот килогерц. В дополнение к использованию звука для общения такими способами, сложность которых мы только начинаем понимать, они используют его в качестве «сонара» для ориентирования в воде и определения местоположения пищи. Дельфин может посылать вперёд высокочастотный звуковой импульс и путём анализа эха от него узнавать не только то, где находятся объекты, но и довольно много о том, что это за объекты и как они ведут себя. Видимость в воде часто бывает довольно ограниченной, поэтому звук — это лучший доступный способ для создания «картинок». Все звуковые волны длиннее световых, поэтому не могут формировать изображение с таким же высоким разрешением; но высокочастотный звук может работать достаточно хорошо. В среде, где свет вообще не справляется со своей задачей, высокочастотный звук выигрывает.

У химических чувств вроде обоняния и вкуса также есть своё применение. Последнее ценно для нас главным образом для подтверждения того, что пища, которая уже находится у нас во рту, на самом деле является тем, чем мы её считаем. Оно также поощряет приём пищи, обеспечивая положительное подкрепление в форме удовольствия. Для некоторых других животных оно значит гораздо больше, чем всё сказанное выше. Похоже, что дельфины используют чувство, которое, наверное, лучше всего назвать «вкусом», для того, чтобы извлечь много информации из воды, в которой они плавают. Лосось пользуется им, чтобы найти обратный путь туда, где он вывелся, чтобы отложить свою икру.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука