Для количественного определения (оценки) любой физической величины необходимо определить единицу измерения, которая в теории измерений носит название меры. Как уже отмечалось, информацию перед обработкой, передачей и хранением необходимо подвергнуть кодированию. Кодирование производится с помощью специальных алфавитов (знаковых систем). В информатике, изучающей процессы получения, обработки, передачи и хранения информации с помощью вычислительных (компьютерных) систем, в основном используется двоичное кодирование, при котором используется знаковая система, состоящая из двух символов 0 и 1. По этой причине в формулах (1.1) и (1.2) в качестве основания логарифма используется цифра 2.
Исходя из вероятностного подхода к определению количества информации эти два символа двоичной знаковой системы можно рассматривать как два различных возможных события, поэтому за единицу количества информации принято такое количество информации, которое содержит сообщение, уменьшающее неопределенность знания в два раза (до получения событий их вероятность равна 0,5, после получения – 1, неопределенность уменьшается соответственно: 1/0,5 = 2, т. е. в 2 раза). Такая единица измерения информации называется битом (от англ. слова
Следующей по величине единицей измерения количества информации является байт, представляющий собой последовательность, составленную из восьми бит, т. е.
1 байт = 23 бит = 8 бит.
В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где
Кратные байту единицы измерения количества информации вводятся следующим образом:
1 Килобайт (Кбайт) = 210 байт = 1024 байт,
1 Мегабайт (Мбайт) = 210 Кбайт = 1024 Кбайт,
1 Гигабайт (Гбайт) = 210 Мбайт = 1024 Мбайт,
1 Терабайт (Тбайт) = 210 Гбайт = 1024 Гбайт,
1 Петабайт (Пбайт) = 210 Тбайт = 1024 Тбайт,
1 Экзабайт (Эбайт) = 210 Пбайт = 1024 Пбайт.
Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т. д., с точки зрения теории измерений не являются корректными, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент 10n, где
Вероятностный подход используется и при определении количества информации, представленной с помощью знаковых систем. Если рассматривать символы алфавита как множество возможных сообщений
Количество информации, которое несет один знак алфавита, тем больше, чем больше знаков входит в этот алфавит. Количество знаков, входящих в алфавит, называется мощностью алфавита. Количество информации (информационный объем), содержащееся в сообщении, закодированном с помощью знаковой системы и содержащем определенное количество знаков (символов), определяется с помощью формулы:
где
Поясним вышесказанное в п. 1.2 на примерах.
Определим, какое количество информации можно получить после реализации одного из шести событий. Вероятность первого события составляет 0,15; второго – 0,25; третьего – 0,2; четвертого – 0,12; пятого – 0,12; шестого – 0,1, т. е.
Для определения количества информации применим формулу (1.1)
Для вычисления этого выражения, содержащего логарифмы, воспользуемся сначала компьютерным калькулятором, а затем табличным процессором
Для вычисления с помощью компьютерного калькулятора выполним следующие действия.