Реализуются информационные процессы в системах, которые называются информационными, при этом под системой в общем случае понимается совокупность объектов и отношений между ними, существующая как единое целое.
Информационные системы также можно классифицировать по различным признакам: по сфере применения, организации информационных процессов, территориальному признаку, степени автоматизации информационных процессов и т. д. Например, по сфере применения информационные системы можно подразделить на административные, экономические, производственные, медицинские и т. д.
Для экономической информационной системы характерными признаками являются: непрерывное развитие, обусловленное появлением новых потребностей, сменой механизма хозяйствования; многоцелевой характер функционирования; присутствие человека как основного элемента системы. Под экономической информационной системой (ЭИС) будем понимать совокупность внутренних и внешних потоков прямой и обратной информационной связи экономического объекта, методов, средств, специалистов, участвующих в процессе обработки информации и выработке управленческих решений [2]. В качестве примера можно привести финансовые, банковские, страховые и тому пободные ЭИС.
1.2. Определение количества информации. Единицы измерения количества информации
Как уже отмечалось, понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т. е. при различных уровнях рассмотрения. В основном выделяют три уровня – синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.
На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т. д.). Разработанные в середине XX в. математические и, в частности, вероятностные методы позволили сформировать подход к оценке количества информации как к мере уменьшения неопределенности знаний. Такой подход, называемый также вероятностным, постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких-либо событиях, которые могут реализоваться с различными вероятностями. Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948 г. Согласно этой формуле количество информации может быть определено следующим образом:
где I – количество информации; N – количество возможных событий (сообщений); pi – вероятность отдельных событий (сообщений); – математический знак суммы чисел.
Определяемое с помощью формулы (1.1) количество информации принимает только положительное значение. Поскольку вероятность отдельных событий меньше единицы, то соответственно выражение log^,– является отрицательной величиной и для получения положительного значения количества информации в формуле (1.1) перед знаком суммы стоит знак минус.
Если вероятность появления отдельных событий одинаковая и они образуют полную группу событий, т. е.
то формула (1.1) преобразуется в формулу Р. Хартли:
В формулах (1.1) и (1.2) отношение между количеством информации и соответственно вероятностью, или количеством, отдельных событий выражается с помощью логарифма. Применение логарифмов в формулах (1.1) и (1.2) можно объяснить следующим образом. Для простоты рассуждений воспользуемся соотношением (1.2). Будем последовательно присваивать аргументу N значения, выбираемые, например, из ряда чисел: 1, 2, 4, 8, 16, 32, 64 и т. д. Чтобы определить, какое событие из N равновероятных событий произошло, для каждого числа ряда необходимо последовательно производить операции выбора из двух возможных событий. Так, при N = 1 количество операций будет равно 0 (вероятность события равна 1), при N = 2, количество операций будет равно 1, при N = 4 количество операций будет равно 2, при N = 8, количество операций будет равно 3 и т. д. Таким образом получим следующий ряд чисел: 0, 1, 2, 3, 4, 5, 6 и т. д., который можно считать соответствующим значениям функции I в соотношении (1.2). Последовательность значений чисел, которые принимает аргумент N, представляет собой ряд, известный в математике как ряд чисел, образующих геометрическую прогрессию, а последовательность значений чисел, которые принимает функция I, будет являться рядом, образующим арифметическую прогрессию. Таким образом, логарифм в формулах (1.1) и (1.2) устанавливает соотношение между рядами, представляющими геометрическую и арифметическую прогрессии, что достаточно хорошо известно в математике.