[ 4. 5. 6.]]
>>> print array([78, 85, 77, 69, 82, 73, 67], 'c')
[N U M E R I C]
В качестве элементов массива можно использовать следующие типы: Int8
–Int32
, UnsignedInt8
–UnsignedInt32
, Float8
–Float64
, Complex8
–Complex64
и PyObject
. Числа 8, 16, 32 и 64 показывают количество битов для хранения величины. Типы Int
, UnsignedInteger
, Float
и Complex
соответствуют наибольшим принятым на данной платформе значениям. В массиве можно также хранить ссылки на произвольные объекты.
Количество размерностей и длина массива по каждой оси называются формой массива (shape). Доступ к форме массива реализуется через атрибут shape
:
>>> from Numeric import *
>>> a = array(range(15), Int)
>>> print a.shape
(15,)
>>> print a
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> a.shape = (3, 5)
>>> print a.shape
(3, 5)
>>> print a
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
Методы массивов
Придать нужную форму массиву можно функцией Numeric.reshape()
. Эта функция сразу создает объект–массив нужной формы из последовательности.
>>> import Numeric
>>> print Numeric.reshape("абракадабр", (5, -1))
[[а б]
[р а]
[к а]
[д а]
[б р]]
В этом примере –1
в указании формы говорит о том, что соответствующее значение можно вычислить. Общее количество элементов массива известно (10), поэтому длину вдоль одной из размерностей задавать не обязательно.
Через атрибут flat
можно получить одномерное представление массива:
>>> a = array([[1, 2], [3, 4]])
>>> b = a.flat
>>> b
array([1, 2, 3, 4])
>>> b[0] = 9
>>> b
array([9, 2, 3, 4])
>>> a
array([[9, 2],
[3, 4]])
Следует заметить, что это новый вид того же массива, поэтому присваивание значений его элементам приводит к изменениям в исходном массиве.
Функция Numeric.resize()
похожа на Numeric.reshape
, но может подстраивать число элементов:
>>> print Numeric.resize("NUMERIC", (3, 2))
[[N U]
[M E]
[R I]]
>>> print Numeric.resize("NUMERIC", (3, 4))
[[N U M E]
[R I C N]
[U M E R]]
Функция Numeric.zeros()
порождает массив из одних нулей, а Numeric.ones()
— из одних единиц. Единичную матрицу можно получить с помощью функции Numeric.identity(n)
:
>>> print Numeric.zeros((2,3))
[[0 0 0]
[0 0 0]]
>>> print Numeric.ones((2,3))
[[1 1 1]
[1 1 1]]
>>> print Numeric.identity(4)
[[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]]
Для копирования массивов можно использовать метод copy()
:
>>> import Numeric
>>> a = Numeric.arrayrange(9)
>>> a.shape = (3, 3)
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> a1 = a.copy()
>>> a1[0, 1] = -1 # операция над копией
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
Массив можно превратить обратно в список с помощью метода tolist()
:
>>> a.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
Срезы
Объекты–массивы Numeric
используют расширенный синтаксис выделения среза. Следующие примеры иллюстрируют различные варианты записи срезов. Функция Numeric.arrayrange()
является аналогом range()
для массивов.
>>> import Numeric
>>> a = Numeric.arrayrange(24) + 1
>>> a.shape = (4, 6)
>>> print a # исходный массив
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]
[13 14 15 16 17 18]
[19 20 21 22 23 24]]
>>> print a[1,2] # элемент 1,2
9
>>> print a[1,:] # строка 1
[ 7 8 9 10 11 12]
>>> print a[1] # тоже строка 1
[ 7 8 9 10 11 12]
>>> print a[:,1] # столбец 1
[ 2 8 14 20]
>>> print a[-2,:] # предпоследняя строка
[13 14 15 16 17 18]
>>> print a[0:2,1:3] # окно 2x2
[[2 3]
[8 9]]