Для достижения противолучевого эффекта снижают напряжение кислорода в органах подопытных животных путем введения в организм перед облучением различных химических веществ - антиокислителей. Было доказано, что введение веществ, нарушающих транспорт кислорода гемоглобином крови и тем самым концентрацию кислорода в тканях, оказывает защитное действие. Такие вещества, как нитрит натрия, метиленовая синька, превращают гемоглобин крови в метгемоглобин - вещество, не способное слабо и обратимо связывать кислород в легких, а затем отдавать его в капиллярах внутренних органов. Введение в организм метгемоглобинообразователей ослабляет тяжесть лучевой болезни.
Даже такой сильный яд, как синильная кислота и ее соли, в известных дозах оказывает противолучевое действие. Связывая ионы железа, меди и других металлов, входящие в состав активных центров дыхательных ферментов, цианиды, азиды, нитрилы и т. п. также оказывают антиокислительное действие, играющее существенную роль в механизме защитного эффекта. Окись углерода (угарный газ) проявляет противолучевое действие благодаря двум механизмам: образует довольно прочное соединение с гемоглобином крови (карбоксиге-моглобин) и связывает тканевые окислительные ферменты.
Наконец, существует довольно большая группа противолучевых средств, так называемые биогенные амины, которые существенно снижают вредное действие излучения, затрудняя доставку кислорода по сосудам к радиочувствительным органам. Эти содержащие аминогруппу вещества являются нормальными компонентами тканей млекопитающих и выполняют в организме очень ответственные функции гормонов, медиаторов (передатчиков нервного возбуждения), регуляторов обменных процессов. Таковы гормон мозгового вещества надпочечников адреналин, медиаторы норадреналин и ацетилхолин, сосудисто-активные вещества, серотонин и гистамин.
Один из них (адреналин, норадреналин, серотонин и их производные) дают противолучевой эффект, вызывая длительное и сильное сужение сосудов, снабжающих кровью костный мозг, селезенку и другие радиочувствительные органы, вследствие чего поступление кислорода и уровень его в них резко падают; это и дает защиту. Другие (ацетилхолин и гистамин), наоборот, расширяют сосуды внутренних органов, что приводит к резкому замедлению и даже остановке кровотока и в конечном счете дает тот же результат, что применение адреналина: тканевую гипоксию и увеличение устойчивости к облучению.
Выброс в кровь биогенных аминов - нормальная реакция организма на облучение, сопровождает также введение в организм наиболее эффективных радиозащитных препаратов (цистеамина, АЭТ, мексамина, а также нитрита натрия), обусловливая в некоторой степени их противолучевую эффективность. Применение биогенных аминов можно рассматривать как удачную попытку усиления собственных защитных сил организма.
Интересно, что биогенные амины, будучи антагонистами в своем физиологическом действии, в то же время усиливают противолучевой эффект друг друга. Л.Ф.Семенов установил, что комбинация адреналина с его физиологическим антагонистом - ацетилхолином - дает значительно более высокую защиту, чем применение каждого из препаратов в отдельности. Нам удалось выяснить один из механизмов этого взаимодействия: адреналин временно блокирует активность фермента (хо-линэстеразы), разрушающего ацетилхолин. Поэтому ацетилхолин, введенный в организм вместе с адреналином, дольше сохраняется и дает более сильный эффект.
Некоторый защитный эффект удается получить даже в том случае, если искусственно ограничить кровоснабжение отдельных участков тела, например путем наложения жгута на конечности или хвост мышей, крыс и т. п. Участки костного мозга в костях таких конечностей лучше переносят облучение и облегчают выздоровление облученного животного.
Таким образом, в результате многочисленных исследований открыта и изучена большая группа защитных противолучевых средств. Значит ли это, что задача химической защиты животных организмов от действия радиации решена?
К сожалению, этого сказать пока нельзя. Известные науке и подробно изученные противолучевые препараты в подавляющем большинстве обладают серьезными недостатками. Прежде всего, их защитное действие кратковременно: лишь при введении препаратов за 5 - 30 мин., максимум за 1 - 2 часа до облучения, удается эффективно уменьшить размер лучевых поражений. Ясно, что во всех тех случаях, когда момент лучевого воздействия заранее неизвестен (в полевых условиях, при авариях и т. п.) либо когда облучение продолжительно (при космических полетах) или многократно (лучевая терапия опухолей), такие защитные препараты практического значения не имеют.
Большинство сульфогидрильных препаратов легко окисляется, теряя свою эффективность. Поэтому срок их хранения ограничен. Все эти соединения не оказывают никакого влияния на размер лучевых поражений или даже осложняют их течение, если ввести их после облучения, даже через 20 - 30 секунд.