Введение защитного вещества вызывает, таким образом, своего рода "биохимический шок" клетки, серьезную перестройку ее внутренней организации. Весь комплекс изменений или во всяком случае их часть таковы, что существенно повышают сопротивляемость клетки действию радиации, ее устойчивость в условиях облучения. Одно из проявлений "биохимического шока", имеющее, быть может, наиболее важное значение в механизме защиты, - увеличение в клетке количества свободных - SH-групп. Исследования советского радиобиолога Э. Я. Граевского и его сотрудников показали, что увеличение внутриклеточного уровня тиоловых групп происходит лишь частично (не более чем на 25 - 35%) за счет накопления . введенного извне радиозащитного вещества. Главное значение имеет мобилизация собственных ресурсов клетки. Освобождающиеся в клетке в процессе "биохимического шока" сульфогидрильные группы обладают высокой химической реактивностью, и именно они, очевидно, дают эффект защиты, перехватывая и обезвреживая водные радикалы на подходе к белкам и нуклеиновым кислотам.
Важную роль в механизме лучевого поражения играет растворенный в жидкостях организма кислопотт. Некоторые ученые высказали предположение, что тио-ловые защитные вещества связывают не только окислительные радикалы, но и кислород, уменьшая тем самым "кислородный эффект" облучения. Если цистеин связывает кислород и тем самым оказывает защитное действие, увеличение давления кислорода во вдыхаемом воздухе должно уменьшить его защитный эффект. И действительно, с помощью кислорода под давлением удалось снять противолучевое действие цистеина. Кислород под давлением, кстати говоря, совершенно самостоятельно вызывает повреждения, очень сходные с лучевыми.
Прямое определение кислорода в тканях живого организма осуществили в очень интересных и тщательно поставленных опытах советские ученые Э. Я. Граевский и М. М. Константинова. Они установили, что введение цистеамина и других сульфогидрильных соединений не оказывает достоверного влияния на уровень кислорода. Следовательно, в живом организме процессы происходят намного сложнее, чем это представляется некоторым ученым на основании модельных опытов в пробирке или даже экспериментов на мышах.
Однако мысль о возможности снижения глубины лучевых поражений путем уменьшения концентрации кислорода в клетках, вопреки первым неудачам, оказалась плодотворной. Снизить уровень кислорода в тканях - вызвать тканевую гипоксию - можно легче всего путем уменьшения количества кислорода во вдыхаемом воздухе. Такой опыт удобно осуществить на микроорганизмах, которые длительное время могут существовать в бескислородных условиях. Эти опыты, поставленные американским радиобиологом А. Холлендером и учеными других стран на бактериях (кишечной палочке и др.), водорослях, грибках, дали отличный результат. При одной и той же дозе облучения гибель микроорганизмов и задержка их деления были тем меньше, чем ниже концентрация кислорода в окружающей их среде.
В опытах на млекопитающих воспроизвести такие условия невозможно. Но все же снижение количества кислорода во вдыхаемом воздухе (до 5 - 7%) на 40 - 70% уменьшает гибель мышей, облученных летальными дозами радиации.
При понижении температуры тела животного (гипотермии) снижается интенсивность обменных процессов, в том числе окислительных процессов, связанных с поступлением кислорода в ткани и клетки. Установлено, что и гипотермия значительно уменьшает вредное действие радиации. Более того, оказалось, что животные (сурки, хомяки, суслики и др.), находящиеся в состоянии зимней спячки, без видимого вреда переносят такие дозы радиации, которые для них абсолютно смертельны в активном состоянии. Симптомы лучевой болезни у облученных животных проявлялись только после пробуждения от зимней спячки, когда с момента облучения прошло две-три недели. Эти исследования убедительно доказывают участие кислорода в механизме разрушительного действия радиации и перспективность методов защиты организма от облучения путем удаления кислорода из тканей или недопущения его в клетки.
Очень интересный опыт поставили сухумские ученые Л. Ф. Семенов, Б. А. Лапин и др. Они облучили обезьян в состоянии так называемой клинической смерти гамма-лучами радиоактивного кобальта в дозе, значительно превышающей смертельную. Обычно обезьяны после такого облучения погибали через несколько часов или суток. Но в состоянии клинической смерти, когда не бьется сердце, не работают легкие, кровь не доставляет клеткам тела свежие запасы кислорода, а температура тела падает, та же доза радиации не оказала заметного влияния на обезьян. Применив после облучения переливание теплой крови, насыщенной кислородом, согревание и другие мероприятия, ученые оживляли обезьян, и они оставались в живых, как будто и не подвергались облучению сверхсмертельной дозой радиации. Очевидно недостаток кислорода и снижение температуры тела настолько замедлили развитие реакции лучевого последействия, затормозили процессы усиления радиационного поражения, что оживленный организм без труда справился с ними.