Читаем Я — математик. Дальнейшая жизнь вундеркинда полностью

7 = 4 + 2 + 1,

5 = 4 + 1.

Согласно приведенным равенствам в двоичной системе счисления число 7 изображается числом 111, число 5 — числом 101 (это и значит, что 7 равно сумме одной четверки, одной двойки и одной единицы, а 5 — сумме одной четверки, нуля двоек и одной единицы). При выполнении операции умножения этих двух чисел мы поступим теперь следующим образом:

Вспомнив далее, что в двоичной системе счисления 2 = 10, мы можем переписать число 11211 в виде 12011, или в виде 20011, или, наконец, в виде 100011. Лишь последняя форма является истинно двоичной, ибо только в ней не используются никакие другие цифры, кроме 0 и 1. Переходя теперь обратно к десятичной системе счисления, получим: 32 + 0(16) + 0(8) + 0(4) + 2 + 1 = 35. Этот метод получил название метода умножения в двоичной системе счисления. Я хочу подчеркнуть еще раз, что по существу он ничем не отличается от обычного метода умножения, использующего десятичную систему счисления.

Принцип действия аналоговых вычислительных устройств является совсем другим: здесь за основу можно принять, например, то, что в электродинамометре две катушки притягиваются друг к другу с силой, пропорциональной произведению сил протекающих по ним токов, и что эту силу притяжения можно измерить, если снабдить прибор специальной шкалой. Поэтому, если по обмотке одной катушки течет ток в семь единиц, а другой — в пять единиц, то показание прибора в соответствующих единицах будет равно 35. Приборы такого типа, используемые для перемножения чисел, получили название аналоговых в связи с тем, что они заменяют первоначальную ситуацию, в которой было необходимо умножить одну какую-то величину на другую, новой ситуацией, в которой роль этих величин играют уже две силы тока, причем токи эти ведут себя аналогично исходным величинам, т. е. должны перемножаться между собой для определения величины некоторого физического эффекта.

Цифровые вычислительные машины отличаются от аналоговых, в частности, тем, что они в принципе позволяют получить ответ с любой степенью точности, определяемой лишь точностью задания исходных данных, в то время как точность аналоговых устройств ограничена той точностью, с которой исходная ситуация оказывается аналогичной некоторой другой, используемой в качестве модели в наших вычислениях. Типичными аналоговыми устройствами были, например, машины Буша, предназначенные для решения дифференциальных уравнений.

Что же касается относительных достоинств вычислительных машин этих двух типов, то разнообразие и гибкость современных электрических и прочих измерительных приборов позволяют в настоящее время построить достаточно хорошую аналоговую машину с меньшими затратами труда и времени, чем необходимо для создания цифровой машины такого же качества. Однако если нам нужны большая скорость или высокая точность вычислений, то все преимущества оказываются на стороне цифровых машин. Только некоторые исключительные по своим качествам физические приборы могут обеспечить точность, превышающую одну десятитысячную часть измеряемой величины, что соответствует всего лишь точности, получаемой при использовании четырех десятичных разрядов или менее четырнадцати двоичных разрядов в цифровой машине.

Кроме того, физические измерения с такой степенью точности вряд ли могут оказаться очень быстрыми. Аналоговые устройства принципиально не способны обеспечить скорость вычислений, достаточную для проведения наиболее точных и сложных из тех расчетов, необходимость в которых возникает в современной науке и технике. Поэтому мне кажется, что наивысший расцвет использования устройств такого рода сейчас уже позади.

Что же касается цифровых машин, то мне пришлось углубиться в изучение самих принципов их работы. В обычном настольном арифмометре принцип работы заключается в том, что в зависимости от положения одних колес определяется положение некоторых других. Каждое из таких положений выбирается из числа десяти возможных, отличающихся величиной угла поворота относительно некоторого «начального положения». Эти десять положений нетрудно задать с помощью десяти зубцов. Однако при использовании металлических колес мы сталкиваемся со сложными проблемами преодоления инерции и сил трения, существенно ограничивающих возможности наших машин.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии