The macroscopic world as experienced by humans is, in short, an intimate mixture ranging from the most predictable events all the way to wildly unpredictable ones. Our first few years of life familiarize us with this spectrum, and the degree of predictability of most types of actions that we undertake becomes second nature to us. By the time we emerge from childhood, we have acquired a reflex-level intuition for where most of our everyday world’s loci of unpredictability lie, and the more unpredictable end of this spectrum simultaneously beckons to us and frightens us. We’re pulled by but fearful of risk-taking. That is the nature of life.
The Careenium
I now move to a somewhat more complex metaphor for thinking about the multiple levels of causality in our brains and minds (and eventually, if you will indulge me in this terminology, in our souls). Imagine an elaborate frictionless pool table with not just sixteen balls on it, but myriads of extremely tiny marbles, called “sims” (an acronym for “small interacting marbles”). These sims bash into each other and also bounce off the walls, careening about rather wildly in their perfectly flat world — and since it is frictionless, they just keep on careening and careening, never stopping.
So far our setup sounds like a two-dimensional ideal gas, but now we’ll posit a little extra complexity. The sims are also magnetic (so let’s switch to “simms”, with the extra “m” for “magnetic”), and when they hit each other at lowish velocities, they can stick together to form clusters, which I hope you will pardon me for calling “simmballs”. A simmball consists of a very large number of simms (a thousand, a million, I don’t care), and on its periphery it frequently loses a few simms while gaining others. There are thus two extremely different types of denizen of this system: tiny, light, zipping simms, and giant, ponderous, nearly-immobile simmballs.
The dynamics taking place on this pool table — hereinafter called the “careenium” — thus involves simms crashing into each other and also into simmballs. To be sure, the details of the physics involve transfers of momentum, angular momentum, kinetic energy, and rotational energy, just as in a standard gas, but we won’t even think about that, because this is just a
Simmballism
Why the corny pun on “symbol”? Because I now add a little more complexity to our system. The vertical walls that constitute the system’s boundaries react sensitively to outside events (
Of course this image is far-fetched, but remember that the careenium is merely intended as a useful metaphor for understanding our brains, and the fact is that our brains, too, are rather far-fetched, in the sense that they too contain tiny events (neuron firings) and larger events (patterns of neuron firings), and the latter presumably somehow have
Taking the Reductionistic View of the Careenium