The answer is simple: I conceived of these “macroscopic forces” as being merely
I also realized that this kind of shift in levels of description yielded something very precious to living beings:
All of this, to be sure, is very old hat to all physicists and to most philosophers as well, and can be summarized by the unoriginal maxim
Our existence as animals whose perception is limited to the world of everyday macroscopic objects forces us, quite obviously, to function without any reference to entities and processes at microscopic levels. No one really knew the slightest thing about atoms until only about a hundred years ago, and yet people got along perfectly well. Ferdinand Magellan circumnavigated the globe, William Shakespeare wrote some plays, J. S. Bach composed some cantatas, and Joan of Arc got herself burned at the stake, all for their own good (or bad) reasons, none of which, from their point of view, had the least thing to do with DNA, RNA, and proteins, or with carbon, oxygen, hydrogen, and nitrogen, or with photons, electrons, protons, and neutrons, let alone with quarks, gluons, W and Z bosons, gravitons, and Higgs particles.
Thinkodynamics and Statistical Mentalics
It thus comes as no news to anyone that different levels of description have different kinds of utility, depending on the purpose and the context, and I have accordingly summarized my view of this simple truth as it applies to the world of thinking and the brain:
What do I mean by these two terms, “thinkodynamics” and “statistical mentalics”? It is pretty straightforward. Thinkodynamics is analogous to thermodynamics; it involves large-scale structures and patterns in the brain, and makes no reference to microscopic events such as neural firings. Thinkodynamics is what psychologists study: how people make choices, commit errors, perceive patterns, experience novel remindings, and so on.
By contrast, by “mentalics” I mean the small-scale phenomena that neurologists traditionally study: how neurotransmitters cross synapses, how cells are wired together, how cell assemblies reverberate in synchrony, and so forth. And by “statistical mentalics”, I mean the averaged-out, collective behavior of these very small entities — in other words, the behavior of a huge swarm as a whole, as opposed to a tiny buzz inside it.
However, as neurologist Sperry made very clear in the passage cited above, there is not, in the brain, just one single natural upward jump, as there is in a gas, all the way from the basic constituents to the whole thing; rather, there are many way-stations in the upward passage from mentalics to thinkodynamics, and this means that it is particularly hard for us to see, or even to imagine, the ground-level, neural-level explanation for why a certain professor of cognitive science once chose to reshelve a certain book on the brain, or once refrained from swatting a certain fly, or once broke out in giggles during a solemn ceremony, or once exclaimed, lamenting the departure of a cherished co-worker, “She’ll be hard shoes to fill!”