Боб пишет алгоритм поиска для NASA. Его алгоритм заработает, когда ракета будет подлетать к Луне, и поможет вычислить точку посадки.
Это один из примеров того, как время выполнения двух алгоритмов растет с разной скоростью. Боб пытается выбрать между простым и бинарным поиском. Его алгоритм должен работать быстро и правильно. С одной стороны, бинарный поиск работает быстрее. У Боба есть всего 10 секунд, чтобы выбрать место посадки; если он не уложится в это время, то момент для посадки будет упущен. С другой стороны, простой поиск пишется проще и вероятность ошибок в нем ниже… Конечно, Боб
Допустим, проверка одного элемента занимает 1 миллисекунду (мс). При простом поиске Бобу придется проверить 100 элементов, поэтому поиск займет 100 мс. С другой стороны, при бинарном поиске достаточно проверить всего 7 элементов (log2100 равен приблизительно 7), а поиск займет 7 мс. Но реальный список может содержать более миллиарда элементов. Сколько времени в таком случае потребуется для выполнения простого поиска? А при бинарном поиске? Обязательно ответьте на оба вопроса, прежде чем продолжить чтение.
Время выполнения простого и бинарного поиска для списка из 100 элементов
Боб проводит бинарный поиск с 1 миллиардом элементов, и на это уходит 30 мс (log21 000 000 000 равен приблизительно 30). «32 мс! — думает Боб. — Бинарный поиск в 15 раз быстрее простого, потому что простой поиск для 100 элементов занял 100 мс, а бинарный поиск занял 7 мс. Значит, простой поиск займет 30 × 15 = 450 мс, верно? Гораздо меньше отведенных 10 секунд». И Боб выбирает простой поиск. Верен ли его выбор?
Нет, Боб ошибается. Глубоко ошибается. Время выполнения для простого поиска с 1 миллиардом элементов составит 1 миллиард миллисекунд, а это 11 дней! Проблема в том, что время выполнения для бинарного и простого поиска
Время выполнения растет с совершенно разной скоростью!
Другими словами, с увеличением количества элементов бинарный поиск занимает чуть больше времени. А простой поиск займет
«O-большое» описывает, насколько быстро работает алгоритм. Предположим, имеется список размера
А теперь другой пример. Для проверки списка размером
Как записывается «O-большое»
Такая запись сообщает количество операций, которые придется выполнить алгоритму. Она называется «O-большое», потому что перед количеством операций ставится символ «O» (а большое — потому что в верхнем регистре).
Теперь рассмотрим несколько примеров. Попробуйте самостоятельно оценить время выполнения этих алгоритмов.
Наглядное представление «O-большое»
Чтобы повторить следующий практический пример, достаточно иметь несколько листков бумаги и карандаш. Допустим, вы должны построить сетку из 16 квадратов.
Как должен выглядеть хороший алгоритм для построения этой сетки?
Алгоритм 1
Как вариант можно нарисовать 16 квадратов, по одному за раз. Напоминаю: «O-большое» подсчитывает количество операций. В данном примере рисование квадрата считается одной операцией. Нужно нарисовать 16 квадратов. Сколько операций по рисованию одного квадрата придется выполнить?
Сетка рисуется по одному квадрату
Чтобы нарисовать 16 квадратов, потребуется 16 шагов. Как выглядит время выполнения этого алгоритма?
Алгоритм 2
А теперь попробуем иначе. Сложите лист пополам.
На этот раз операцией считается сложение листка. Получается, что одна операция создает сразу два прямоугольника!
Сложите бумагу еще раз, а потом еще и еще.
Разверните листок после четырех сложений — получилась замечательная сетка! Каждое сложение удваивает количество прямоугольников. За 4 операции вы создали 16 прямоугольников!
Построение сетки за 4 сложения