10.2 Предположим, Netflix определяет группу «авторитетов». Скажем, Квентин Тарантино и Уэс Андерсон относятся к числу авторитетов Netflix, поэтому их оценки оказывают более сильное влияние, чем оценки рядовых пользователей. Как изменить систему рекомендаций, чтобы она учитывала повышенную ценность оценок авторитетов?
Ответ: При применении алгоритма k ближайших соседей можно увеличить вес оценок авторитетов. Предположим, у вас трое соседей: Джо, Дэйв и Уэс Андерсон (авторитет.) Они поставили фильму «Гольф-клуб» оценки 3, 4 и 5 соответственно. Вместо того чтобы вычислять среднее арифметическое их оценок (3 + 4 + 5 / 3 = 4 звезды), вы просто повышаете вес оценки Уэса Андерсона: 3 + 4 + 5 + 5 + 5 / 5 = 4,4 звезды.
10.3 У сервиса Netflix миллионы пользователей. В приведенном ранее примере рекомендательная система строилась для пяти ближайших соседей. Пять — это слишком мало? Слишком много?
Ответ: Слишком мало. Если ограничиться малым числом соседей, существует высокая вероятность того, что результаты будут искажены. Существует хорошее эмпирическое правило: для N пользователей следует рассматривать sqrt(N) соседей.