Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Фактически все принципиальные предпосылки и необходимые требования для формулировки уравнений гравитационного поля в ОТО мы обсудили. Было осознано, что гравитационное взаимодействие выражается в искривлении пространства-времени, а искривляется пространство-время под воздействием материи. Оказалось также, что и тела, и материя в целом, воздействуют на пространство-время не только своей массой (или, эквивалентно, энергией), но и состоянием движения, напряжениями внутри тел, взаимодействием между разными видами материи. Больше деталей о материальных источниках можно найти в Дополнении 2. С другой стороны, искривляя пространство-время, материя движется (взаимодействует) уже в пространстве-времени искривленном самой собой. То есть пространство-время в общем случае не является безучастной ареной, на которой кипят страсти физических взаимодействий, а само становится динамическим объектом и во всем участвует. Уравнения Эйнштейна как раз устанавливают правила воздействия материи на пространство-время и наоборот.

Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании аргументов изложенных выше. Практически одновременно они были представлены немецким математиком Давидом Гильбертом (1862–1943). Научные интересы Гильберта во многом были связаны с математической физикой. С большим интересом он следил за попытками Эйнштейна создать общую теорию относительности, основанными на логике анализа физических явлений. Это вдохновило его на поиски строгого математического подхода к построению уравнений, которые и были выведены из, так называемого, принципа наименьшего действия. В общем, Гильберт имел планы «заковать физику» в рамки аксиоматического подхода. Но несмотря на впечатляющие результаты в построении уравнений гравитации, этот глобальный замысел Гильберта не удался. До сих пор ведутся споры о приоритете, однако мы считаем, что одни исследования дополняют другие. Если можно так сказать, то Эйнштейн проник в самую глубину физических явлений, а Гильберт дал аппарат, позволяющий исследовать их более эффективно.

Логика построения уравнений Эйнштейна и их конкретный формальный вид даны в Дополнении 3, а здесь мы разъясним основные понятия ОТО, к которым будем часто обращаться в основном тексте. Вернемся к понятию интервала, который был введен для пространства Минковского. В отличие от плоского пространства, в искривленном пространстве-времени расстояние между двумя мировыми точками в общем случае невозможно определить как конечную длину отрезка прямой. Необходимо перейти к измерениям в малой окрестности мировой точки (к бесконечно малым величинам). Тогда квадрат интервала пространства Минковского между двумя бесконечно близкими точками перепишется как квадрат элемента интервала (уже бесконечно малой величины) в виде:

ds2 = c2dt2dx2dy2dz2.

Элемент пространства Минковского имеет такой простой вид еще и потому, что здесь используются координаты Лоренца, то есть декартовы координаты в совокупности с временной координатой. Этот же квадрат элемента интервала (часто его все равно называют «интервал») может быть записан в более формальном виде:

ds2 = abdxadxb.

Здесь a, b = 0, 1, 2, 3; а нулевой координате обычно приписывают смысл временной, умноженной на скорость света: x0 = ct. Величина ab является диагональной (отличны от нуля только элементы на диагонали) матрицей 4 x 4,

и называется метрикой Минковского. Формальная запись интервала перейдет в уже привычную, если использовать простое правило суммирования по повторяющимся индексам, например: mana = m0n0 + m1n1 + m2n2 + m3n3. Метрика ab задает способ измерения расстояний в пространстве Минковского в лоренцевых координатах.

Давайте «искривим» координаты (сделаем их произвольное преобразование), тогда интервал примет вид:

ds2 = gabdxadxb.

Величина gab также называется метрикой и фактически задает способ измерения расстояний в пространстве Минковского, но в тех координатах, в которых она определена.

Важно отметить, что элемент ds, так же как и сам интервал, инвариантная величина, то есть его значение остается тем же в любых координатах. Метрика gab – это тоже матрица 4 x 4, но теперь в общем случае она уже не диагональна, ее компоненты g00, g01, g11, g12 могут быть какими-либо функциями времени и пространственных координат, см. Дополнение 1.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука