Читаем Головоломки и развлечения полностью

На всякий случай предупреждаю, что это — не задача-шутка и никакой ловушки не скрывает.

<p>Тиканье часов</p>

Положите свои карманные часы на стол, отойдите шага на три или на четыре и прислушайтесь к их тиканью. Если в комнате достаточно тихо, то вы услышите, что часы ваши идут словно с перерывами: то тикают короткое время, то на несколько секунд замолкают, то снова начинают идти, и т. д.

Чем объясняется такой неравномерный ход?

<p>Ответы</p><p>Цифра шесть</p>

Большинство непредупрежденных людей в ответ на вопрос этой задачи рисуют одно из начертаний 6, или VI. Это показывает, что можно видеть вещь 100 тысяч раз и все-таки не знать ее. Дело в том, что обычно на циферблате (мужских часов) цифры шесть вовсе нет, потому что на ее месте помещается секундник.

<p>Трое часов</p>

Через 740 суток. За это время вторые часы отстанут на 720 минут, то есть ровно на 12 часов; третьи часы на столько же уйдут вперед. Тогда все трое часов будут показывать то же, что и 1 января, то есть верное время.

<p>Двое часов</p>

Будильник уходит в течение часа на 3 минуты по сравнению со стенными часами. На 1 час, то есть на 60 минут, он уходит в течение 20 часов. Но за эти 20 часов будильник ушел вперед по сравнению с верным временем на 20 минут. Значит, стрелки были поставлены верно 19 часов 20 минут назад, то есть в 11 часов 40 минут.

<p>Который час?</p>

Между 3 и 6 часами 180 минут. Нетрудно сообразить, что число минут, остающихся до 6 часов, найдется, если 180 — 50, то есть 130, разделим на такие две части, из которых одна в четыре раза больше другой. Значит, надо найти пятую часть от 130. Итак, было без 26 минут шесть.

Действительно, 50 минут назад оставалось до 6 часов 26 + 50 = 76 минут, и, значит, после 3 часов прошло 180 — 76 = 104 минуты; это вчетверо больше числа минут, остающихся теперь до шести.

<p>Когда стрелки встречаются?</p>

Начнем наблюдать за движением стрелок в 12 часов. В этот момент обе стрелки друг друга покрывают. Так как часовая стрелка движется в 12 раз медленнее, чем минутная (она описывает полный круг в 12 часов, а минутная в 1 час), то в течение ближайшего часа стрелки, конечно, встретиться не могут. Но вот прошел час; часовая стрелка стоит у цифры 1, сделав 1/12 долю полного оборота; минутная же сделала полный оборот и стоит снова у XII — на 1/12 долю круга позади часовой. Теперь условия состязания иные, чем раньше: часовая стрелка движется медленнее минутной, но она впереди, и минутная должна ее догнать. Если бы состязание длилось целый час, то за это время минутная стрелка прошла бы полный круг, а часовая 1/12 круга, т. е. минутная сделала бы на 1/12 круга больше. Но, чтобы догнать часовую стрелку, минутной нужно пройти больше, чем часовой, только на ту 1/12 долю круга, которая их отделяет. Для этого потребуется времени не целый час, а меньше во столько раз, во сколько раз 1/12 меньше 11/12, т. е. в 11 раз. Значит, стрелки встретятся через 1/11 часа, т. е. через 60/11 = 5 5/11 минуты.

Итак, встреча стрелок случится спустя 5 5/11 минуты после того, как пройдет 1 час, т. е. в 5 5/11 минут второго.

Когда же произойдет следующая встреча?

Нетрудно сообразить, что это случится спустя 1 час 5 5/11 мин., т. е. в 2 часа 10 10/11 мин. Следующая — спустя еще 1 час 5 5/11 мин., т. е. в 3 часа 16 4/11 мин., и т. д. Всех встреч, как легко видеть, будет 11; одиннадцатая наступит через 1 1/11 × 11 = 12 часов после первой, т. е. в 12 часов; другими словами, она совпадает с первой встречей, и дальнейшие встречи повторятся снова в прежние моменты.

Вот все моменты встреч:

<p>Когда стрелки направлены врозь?</p>

Эта задача решается весьма сходно с предыдущей. Начнем опять с 12 часов, когда обе стрелки совпадают. Нужно вычислить, сколько времени потребуется для того, чтобы минутная стрелка обогнала часовую ровно на полкруга, — тогда обе стрелки и будут направлены как раз в противоположные стороны. Мы уже знаем (см. предыдущую задачу), что в течение целого часа минутная стрелка обгоняет часовую на 11/12 полного круга; чтобы обогнать ее всего на 1/2 круга, понадобится меньше времени, чем целый час, — меньше во столько раз, во сколько 1/2 меньше 11/12, т. е. потребуется всего 6/11 часа. Значит, после 12 часов стрелки в первый раз располагаются одна против другой спустя 6/11 часа, или 32 8/11 минуты. Взгляните на часы в 32 8/11 минуты первого, и вы убедитесь, что стрелки направлены в противоположные стороны.

Единственный ли это момент, когда стрелки так расположены? Конечно, нет. Такое положение стрелки занимают спустя 32 8/11 минуты после каждой встречи. А мы уже знаем, что встреч бывает 11 в течение двенадцати часов; значит, и располагаются стрелки врозь тоже 11 раз в течение 12 часов. Найти эти моменты нетрудно:

12 ч. + 32 8/11 мин. = 12 ч. 32 8/11 мин.

1 ч. 5 5/11 мин. + 32 8/11 мин. = 1 ч. 38 2/11 мин.

2 ч. 10 10/11 мин. + 32 8/11 мин. = 2 час. 43 7/11 мин.

3 ч. 16 1/11 мин. + 32 8/11 мин. = 3 ч. 49 1/11 мин. и т. д.

Вычислить остальные моменты предоставляю вам самим.

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги