Для того чтобы понять, насколько стремительно эта революция сокрушила своих противников, отметим, что еще в начале 20-х гг. XX в. некоторые ученые выражали серьезные сомнения в существовании «атомов». Того, что нельзя увидеть или оценить количественно в лабораторных условиях, не существует, заявляли они. Но к 1925–1926 гг. Эрвин Шрёдингер, Вернер Гейзенберг и другие приблизились к математическому описанию атома водорода. С ошеломляющей точностью они сумели объяснить почти все свойства атома водорода исключительно математическими методами. К 1930 г. такие специалисты в области квантовой механики, как Поль Дирак, утверждали, что
Блистательный взлет квантовой механики не только сопровождался исчерпывающим объяснением необычных свойств атомного мира; она на долгие десятилетия затмила труды Эйнштейна. Одной из первых потерь квантовой революции стала выдвинутая Эйнштейном геометрическая теория Вселенной. Молодые физики начали перешептываться в коридорах Института перспективных исследований о том, что пик славы Эйнштейна позади и что квантовая революция прошла мимо него. Новое поколение ученых спешило прочесть последние статьи по квантовой механике, а не по теории относительности. Даже глава института Роберт Оппенгеймер в разговорах с близкими друзьями признавал, что работы Эйнштейна безнадежно устарели. Сам Эйнштейн начинал считать себя «пережитком прошлого».
Мечтой Эйнштейна, как мы помним, было создание «мраморной», т. е. чисто геометрической, Вселенной. У Эйнштейна вызывало отторжение сравнительное уродство материи с ее невнятной и беспорядочной путаницей форм, которую он называл «деревом». Целью Эйнштейна было раз и навсегда изгнать из своих теорий этот изъян, превратить «дерево» в «мрамор». Он рассчитывал в конечном итоге создать теорию Вселенной, опирающуюся только на «мрамор». К своему ужасу, Эйнштейн обнаружил, что квантовая теория
Вспомним и то, что по аналогии с «деревом» и «мрамором» Эйнштейн хотел превратить дерево на мраморной площади в мраморную статую, создать парк, полностью состоящий из мрамора. Но в квантовой механике к этой задаче подошли с другой стороны. Очевидно, мечтой ученых было взять кувалду и разбить весь «мрамор» вдребезги. А потом, убрав «мраморные обломки», сделать полностью «деревянное» покрытие.
В сущности, квантовая теория перевернула труды Эйнштейна с ног на голову. Почти во всех отношениях она противоположна теории Эйнштейна. Общая теория относительности Эйнштейна — теория космоса, звезд и галактик, которым не дает распасться гладкая ткань пространства и времени. А квантовая теория, напротив, — теория микрокосма, где субатомные частицы удерживаются вместе благодаря подобным частицам силам, танцующим на стерильной сцене пространства-времени, которая представляется пустой, лишенной какого бы то ни было содержимого. Таким образом, эти две теории — враждующие противоположности. По сути дела, волна, поднятая квантовой революцией, более чем на полвека задушила всяческие попытки геометрического понимания сил.
На протяжении всей книги поднимается тема законов физики, которые выглядят простыми и едиными в высших измерениях. Но после 1925 г., с появлением «квантовой ереси», этой теме был брошен первый серьезный вызов. Последующие шестьдесят лет, до середины 1980-х гг., в мире физики господствовала идеология квантовых еретиков, почти похоронившая геометрические идеи Римана и Эйнштейна под лавиной неоспоримых успехов и поразительных экспериментальных побед.
Очень быстро квантовая теория предоставила нам исчерпывающую структуру для описания зримой Вселенной: материальная Вселенная состоит из атомов и элементов этих атомов. Существует около 100 разновидностей атомов, или элементов, из которых можно построить все известные формы материи, имеющиеся на Земле и даже в космосе. В свою очередь, атомы состоят из электронов, движущихся по орбитам вокруг ядра, состоящего, в свою очередь, из нейтронов и протонов. Основные различия между прекрасной геометрической теорией Эйнштейна и квантовой теорией теперь можно свести к следующему:
1. Силы создаются при обмене отдельными порциями энергии, называемыми
В отличие от геометрической картины «силы» Эйнштейна в квантовой теории свет пришлось дробить на крохотные части. Эти порции света, названные