Но в 1971 г. чаши весов заметно склонились в пользу редукционизма, когда Герард ’т Хоофт обнаружил, что поле Янга-Миллса может дать самосогласованную теорию субатомных сил. Внезапно прежние представления о взаимодействиях частиц рухнули, словно вековые деревья в лесу. Поле Янга-Миллса обеспечивало поразительное соответствие экспериментальным данным, полученным в ускорителях частиц, и привело к созданию Стандартной модели, а теория S-матрицы постепенно погрязла в малопонятной математике. К концу 1970-х гг. редукционизм как будто одержал полную и необратимую победу над холизмом и теорией S-матрицы.
Но в 1980-е гг. расстановка сил опять изменилась. Когда теории Великого объединения не смогли проникнуть в суть гравитации или получить результаты, подтверждаемые экспериментально, физики приступили к поиску новых исследовательских направлений. Отход от теорий Великого объединения начался с новой теории, обязанной своим существованием теории S-матрицы.
В 1968 г., когда теория S-матрицы находилась в зените славы, глубокое влияние на Венециано и Судзуки оказал подход, связанный с определением S-матрицы во всей ее целостности. В поисках математического представления целой S-матрицы они наткнулись на бета-функцию Эйлера. Если бы они обратились к редукционистским диаграммам Фейнмана, то не сделали бы одного из величайших открытий последних нескольких десятилетий.
Двадцать лет спустя мы видим цветение проросшего семени теории S-матрицы. Теория Венециано-Судзуки дала рост теории струн, которая в свою очередь была повторно интерпретирована с помощью теории Калуцы-Клейна как десятимерная теория Вселенной.
Таким образом, мы видим, что десятимерная теория опирается на обе традиции. Она родилась как детище холистической теории S-матрицы, однако содержит редукционистские теории Янга-Миллса и кварков. В сущности, она достаточно созрела для того, чтобы впитать оба подхода.
Десять измерений и математика
Одна из самых удивительных особенностей теории суперструн состоит в том, на какой уровень взлетела математика.
Ни одна другая теория, известная науке, не пользуется такими эффективными математическими преобразованиями на столь фундаментальном уровне. Оглядываясь назад, мы понимаем, что это необходимо, так как любая объединенная теория поля сначала должна воспринять риманову геометрию теории Эйнштейна и группы Ли из квантовой теории поля, а затем применить еще более высокую математику, чтобы сделать их совместимыми. Эта новая математика, отвечающая за слияние двух теорий, — топология, на которую возложена ответственность за осуществление, казалось бы, невыполнимой задачи устранения бесконечностей из квантовой теории гравитации.
Неожиданное введение высшей математики в физику посредством теории струн застало многих физиков врасплох. Немало ученых тайно ходили в библиотеку, чтобы заглянуть в толстые тома математической литературы и разобраться в десятимерной теории. Физик из ЦЕРНа Джон Эллис признается: «Я сам не сразу заметил, что стал все чаще заглядывать в книжные магазины и выискивать математические энциклопедии, чтобы вызубрить все эти гомологии, гомотопии и прочую математику, в которой прежде не удосуживался разобраться!» [167]Для тех, кого беспокоила неуклонно разрастающаяся брешь между математикой и физикой в нашем столетии, уже само это событие стало отрадным и исторически значимым.
Математика и физика традиционно неразделимы еще со времен древних греков. Ньютон и его современники никогда не проводили четкой границы между математикой и физикой, называли себя натурфилософами и чувствовали себя в своей стихии в отличающихся друг от друга мирах математики, физики и философии.
Гаусс, Риман и Пуанкаре отводили физике главное место как источнику новых математических методов. На протяжении XVIII–XIX вв. происходило интенсивное перекрестное опыление математики и физики. Но после Эйнштейна и Пуанкаре в развитии этих наук произошел крутой поворот. Последние 70 лет математики и физики почти не поддерживали связь друг с другом. Математики исследовали топологию