Велтон стал четвертым физиком в группе, которую возглавил Фейнман. Она теперь называлась Т-4, «Проблемы диффузии». Фейнман был очень энергичным и весьма оригинальным руководителем. Он упорно подталкивал членов своей группы к тому, чтобы они следовали его оригинальным идеям. Порой кто-то из них возражал, заявляя, что предложение Фейнмана было слишком странным или слишком сложным. Тогда Ричард настаивал, чтобы они провели расчеты с помощью механических калькуляторов. Неоднократно его предложения оказывались успешными, и он заслужил их доверие и лояльное отношение к проведению широкого спектра экспериментов. Следуя его примеру, остальные тоже пытались предлагать что-то новое. Никакая идея не считалась слишком невероятной. В то же время Фейнман бывал довольно резким, если работа не соответствовала его высоким стандартам. Даже Велтону не удалось избежать его унизительных упреков и его «определенно грубого юмора», на который «только дурак захотел бы нарваться дважды». И все же Фейнману удалось создать в группе атмосферу, не чуждую остроумию. Он научился одним движением подбрасывать карандаш со стола и ловить его и научил этому всех членов своей группы. Однажды, в разгар разлетающихся повсюду слухов о том, что ученым, работающим в технической сфере, будет выдана военная форма, в кабинет вошел Бете, чтобы обсудить результаты расчетов. Фейнман сказал, что придется производить вычисления вручную, и Бете согласился. Тогда Ричард повернулся и скомандовал: «Карандаши, вычислять!»
Тут же все карандаши одновременно взлетели в воздух. «Есть карандаши! — прокричал Фейнман. — Вычисляйте!» Бете засмеялся.
Диффузия, это почти неуловимое, ускользающее напоминание о физике, изучаемой на первом курсе, оказалась в центре всех проблем, над которыми работали все группы. Откройте флакон с духами в помещении. Сколько времени потребуется, чтобы их аромат достиг носа человека, который стоит на расстоянии в два, два с половиной, три метра от него? Имеет ли значение температура воздуха? Его плотность? Масса молекул, разносивших аромат? Форма комнаты? Обычная теория молекулярной диффузии позволяла ответить на большинство из этих вопросов. Для этого надо было просто воспользоваться стандартным дифференциальным уравнением (но не на последний вопрос, где необходимость учитывать геометрию стен приводила к его усложнению). Продвижение молекул зависит от того, как часто и в какой последовательности они будут сталкиваться на своем пути с другими молекулами. Их движение будет происходить рывками, а траектория каждой молекулы будет складываться из суммы траекторий разной длины, по которым молекула могла двигаться в любом направлении. Аналогичная проблема возникала в той или иной форме и в случае, когда надо было учесть, как распространяется тепло в металле. Таким образом, главный вопрос Лос-Аламоса также был связан с диффузией, только в новом обличье. Расчеты критической массы быстро переросли в не что иное, как расчеты диффузии — диффузии нейтронов в странном радиоактивном минном поле, где их столкновения приводили к последствиям более зн