Над генетикой! Как метко выразился британский биолог Питер Медавар: «Генетика предполагает, а эпигенетика располагает». Природа может создавать какие угодно коды, но на деле все зависит от того, как именно эти коды будут реализованы.
Самое время заподозрить, что клетки обладают каким-то особым клеточным разумом, позволяющим им выбирать на хромосомах участки для считывания информации. Однако никакого клеточного разума не существует, все определяется химией. Впрочем, и наше разумное мышление тоже представляет совокупность химических процессов, но сейчас речь не об этом, а о механизмах эпигенетики.
Вспомните деактивацию ненужной второй Х-хромосомы у женщин, которая «упаковывается» в тельце Барра. Это один из механизмов эпигенетики, который называется ремоделированием[54] хроматина. Чем компактнее упакована молекула ДНК в хроматине, тем меньше информации с нее считывается. Если свернуть молекулу в тугой клубок, каким является тельце Барра, то с молекулы ДНК нельзя будет считать вообще никакой информации.
Другой метод исключения ненужной информации – это метилирование ДНК, суть которого заключается в присоединении метильной группы [-CH3] к азотистому основанию – цитозину, входящему в состав молекул ДНК. Метильная группа замещает один из атомов водорода в молекуле цитозина, и в результате образуется метилцитозин (точнее – 5-метилцитозин, но нам сейчас химические нюансы ни к чему, нам важно понимать суть процесса). Присоединение метильной группы к цитозину осуществляет фермент ДНК-метилтрансфераза.
Выше мы с вами говорили о промоторах – «стартовых площадках» на молекуле ДНК, откуда начинается считывание генетических кодов. Так вот, метилирование цитозина на промоторном участке препятствует считыванию информации с данного гена. Метильная группа «портит» стартовую площадку и делает ген неактивным до тех пор, пока под действием ферментов-деметилаз не произойдет обратный процесс – деметелирование цитозина (удаление метиловой группы). Проще говоря, когда ген перестает быть нужным, на него вешают метиловый «замок», а как только ген понадобится, «замок» снимают. Все просто и эффективно.
Примерно один процент наших генов постоянно блокирован посредством метилирования цитозина на промоторах. Общее суммарное количество метилированного цитозина в нашей ДНК составляет примерно 5 %.
Все эпигенетические методы в той или иной степени участвуют в процессе старения, ведь регуляция экспрессии генов является важной составной частью этого процесса. Теоретически (пока что теоретически, но от теории до практики, как известно, всего один шаг) можно замедлять старение организма, «включая» деактивированные гены. Точно так же управление метилированием ДНК может предотвращать развитие многих заболеваний или излечивать их. Так, например, деактивация генов KLF14, FHL2 и GNPNAT1 значительно снижает риск развития сахарного диабета второго типа[55]. Метилирование ДНК представляет собой относительно простой процесс, и управлять им несложно, так что перспективы перед лечебным метилированием, как и перед всей медицинской генетикой, открываются широчайшие. В идеале, до которого наука когда-нибудь дойдет, профилактика всех заболеваний будет осуществляться еще во внутриутробном периоде путем подавления или же активации определенных генов.
Третий метод эпигенетического управления – это модификация гистонов. Гистонами называются ядерные белки, участвующие в упаковке молекул ДНК и в эпигенетической регуляции таких процессов, как транскрипция, репликация и репарация.
О транскрипции и репликации мы с вами уже говорили, а вот о репарации нет. Пора исправить это упущение. Репарацией[56] называется процесс ликвидации повреждений в молекулах ДНК, возникающих на протяжении жизни клетки. Если парочка атомов случайно отщепилась, или, скажем, произошел разрыв молекулы, то гистоны сразу же начинают ремонтные работы.
Терминальная, то есть концевая часть гистона представляет собой условный паспорт белка, его индивидуальный код, записанный сочетанием определенных аминокислот. Изменяя этот код, можно влиять на все процессы, происходящие с участием гистонов, начиная от упаковки молекул ДНК в хроматин и заканчивая… А вот где заканчиваются полномочия гистонов, пока еще не ясно. Их детальным изучением ученые занялись примерно два десятка лет назад, а с научной точки зрения это весьма маленький срок, особенно в такой «кропотливой» науке, как генетика. Не исключено, что в итоге гистоны окажутся в ответе за все-все-все, что происходит с ДНК и РНК. Во всяком случае, способность некоторых гистонов повышать вероятность метилирования ДНК уже доказана.
Как можно изменить код гистона?