В двадцать первом веке мы наблюдаем, как меняются представления о мозге. В научных кругах выражение «синаптические связи» стало расхожим термином, а специалисты по визуализации озадачились составлением «дорожных карт» мозга, отслеживая нервные пути между его структурами3. Теперь мы знаем, как структуры мозга связываются друг с другом, образуют запутанные «узлы» и «сети», обеспечивающие все проявления нашего поведения, и помогают нам воспринимать мир, понимать его и даже (хочется надеяться) друг друга.
Важно понимать, как физически устроена эта связь, и теперь у нас есть метод, который помогает составить карту нервных путей мозга. Он называется «диффузионно-тензорной томографией» (ДТ МРТ) и уже применяется для отслеживания белого вещества мозга – пучков нервных волокон, покрытых жировой тканью, которые соединяют разные части мозга4. В основе этого метода лежит измерение движения воды вдоль этих нервных волокон. (В качестве примера коллеги предложили опыт, который показывают школьникам младших классов: стебель сельдерея ставят в воду, подкрашенную синими или красными чернилами, и наблюдают, как быстро и как глубоко проникают чернила в растение.) С развитием технологий такие «дорожные карты» становятся все более подробными. Теперь мы можем отличить крупные магистрали от второстепенных и даже проселочных дорог. А если применим специальные методы и поэкспериментируем на животных, то увидим, как дороги строят сами себя и нервные клетки тянутся друг к другу, образуя будущие коммуникационные каналы5.
Нейробиологи выясняют, как объединяются для совместной работы различные структуры мозга и как они решают те проблемы, которые постоянно приходят из окружающего мира. Теперь стало ясно, что мозг – это динамическая, активная система (даже во время пребывания в так называемом «состоянии покоя»). Таким образом, нам нужно научиться измерять «трафик» на этих магистралях, улавливать направления движения и понимать закономерности приливов и отливов, связанные с потребностями владельцев мозга6. И еще нам нужны какие-то идеи о природе самого трафика, будь то медленные и глубокие изменения, характерные для сна, или быстрые и поверхностные волны в отдельных областях, свидетельствующие о движениях (или намерениях их совершить). Еще интереснее наблюдать быстрые всплески активности, во время которых сигналы передаются на дальние (по меркам мозга) расстояния, предположительно нефизическими способами, и объединяют отдаленные участки мозга для совместной работы. Может быть, это похоже на синхронизированные сигналы светофора, которые обеспечивают бесперебойное движение по магистралям или железнодорожным путям?7
Если мы проследим развитие таких связей, то увидим прямое подтверждение закрепившихся представлений о том, что «между нейронами, которые возбуждаются одновременно, возникает прочная связь» и «используй или потеряешь». Действительно, мозг постоянно меняется с течением времени. Такие изменения называются пластичностью мозга. Она происходит в течение всей жизни через взаимодействие мозга с окружающим миром, которое отражается в закономерностях синаптических связей.
Чтобы отследить эти связи, нужные другие системы и измерения, которые стали доступны в двадцать первом веке. Нам известно, что между нервными клетками мозга, или нейронами, существуют коммуникационные каналы. Клетки обмениваются сообщениями при помощи примерно 100 триллионов связей, путем почти незаметных электрохимических взаимодействий, длящихся миллисекунды. Эти взаимодействия прекрасно скоординированы при помощи системы «сдержек и противовесов», которая появилась в процессе эволюции.
Чтобы получить общее представление о работе человеческого мозга, нам нужно научиться отслеживать эти изменения в реальном времени, не проникая внутрь мозга. Разработанный в прошлом столетии метод ЭЭГ позволил сделать ряд открытий, но очень трудно получить «чистый» сигнал: он неизбежно подвергается искажениям при прохождении через ткани мозга, его оболочки, кости черепа, кожу и волосы. И вот здесь на сцену выходит магнитоэнцефалография (МЭГ)8. Из базового курса физики известно, что прохождение электрического тока всегда сопровождается образованием магнитных полей. Магнитные поля мозга не искажаются в той мере, в какой меняется электрический ток, поэтому измерение магнитных полей является намного более точным способом наблюдения за мозгом.