Читаем Гейзенберг. Принцип неопределенности полностью

которые отличаются между собой только знаком. Если мы поменяем местами индексы 1 и 2 или состояния a и b, то в первом случае получим ту же линейную комбинацию, во втором – ту же линейную комбинацию, но с противоположным знаком. Эти комбинации называются симметричной и антисимметричной к смене индексов частиц и состояний соответственно. Какое из этих двух выражений удовлетворяет принципу Паули? Если мы рассмотрим два электрона в одинаковом состоянии, то результат антисимметричной комбинации будет равен нулю. По всей видимости, именно в ней учитывается принцип Паули. Этот простой пример иллюстрирует более общий результат для системы из множества электронов: волновая функция этой системы должна быть антисимметричной, то есть менять знак при смене индексов любых двух электронов.

Вернемся к атому гелия и уточним описанные выше обозначения. Волновая функция каждого электрона представляет собой произведение пространственной части, в которой для обозначения трех квантовых чисел используются буквы n и m, и спиновой части. Для обозначения пространственной части волновой функции используем греческую букву φ(фи) и будем записывать φn(1) и φm(2). В спиновой части два возможных состояния спина обычно обозначаются греческими буквами альфа и бета, поэтому будем записывать α(1) и β(2).

Волновая функция для двух электронов будет записываться так:

φm(1)φn(2)α(1)β(2) – φm(2)φn(1)α(2)β(1).

Это в самом деле антисимметричная комбинация: при смене индексов электронов мы получим тот же результат, но с противоположным знаком. Кроме того, если обозначения состояний равны, итоговый результат равен нулю. Таким образом, принцип Паули выполняется.

Данному принципу удовлетворяет и следующая линейная комбинация:

m(1)φn(2) + φm(2)φn(1)] • [α(1)β(2) – α(2)β(1)].

Это произведение симметричной комбинации пространственных частей и антисимметричной комбинации спиновых частей. Аналогично определяется следующая комбинация:

m(1)φn(2) – φm(2)φn(1)] • [α(1)β(2) + α(2)β(1)].

Она обладает обратными свойствами симметрии и определяется как произведение антисимметричной комбинации пространственных частей на симметричную комбинацию спиновых частей. Можно убедиться, что суммы этих двух новых линейных комбинаций за исключением общего множителя равны первой волновой функции, записанной нами для двух электронов. Однако новый способ записи содержит больше физической информации. Гейзенберг показал, что эти новые выражения описывают два разных множества состояний атома гелия, а именно линии спектра парагелия и ортогелия. В первом случае спиновая часть антисимметрична и соответствует синглетному состоянию – единственному состоянию общего спина. В примере с ортогелием спиновая часть симметрична, что соответствует триплетному состоянию, то есть трем возможным состояниям с одним и тем же значением общего спина. Следовательно, загадка двух видов гелия объясняется, если мы рассмотрим спин электрона: два вида гелия соответствуют двум возможным сочетаниям этих спинов.

Гейзенберг применил эти же идеи при изучении молекулы водорода, содержащей два протона и два электрона, и предсказал существование двух форм водорода, которые также назвал параводородом и ортоводородом. Они были открыты в 1929 году. Это два состояния молекулы с различным общим спином, которые сосуществуют при определенной температуре окружающей среды. Соотношение параводорода и ортоводорода равно 1:3. Как указано в заявлении Нобелевского комитета, Гейзенберг получил Нобелевскую премию по физике «за создание квантовой механики, применение которой привело, в частности, к открытию аллотропных форм водорода».

Квантовая неопределенность

В мае 1926 года Гейзенберг вернулся в Копенгаген – ему предстояло провести целый год в роли помощника Нильса Бора. К этому времени он уже достаточно хорошо говорил по-датски, чтобы преподавать. Бор был рад его возвращению и в письме к Резерфорду сообщал: «Приехал Гейзенберг, и все мы очень заняты обсуждением нового пути развития квантовой механики и перспектив, которые она открывает перед нами».

Как-то раз немецкий посол в Копенгагене пригласил Гейзенберга в свою резиденцию на музыкальный вечер – один из его сыновей, Карл Фридрих фон Вайцзеккер, интересовался физикой и захотел увидеть талантливого ученого. Гейзенберг постоянно общался с юными скаутами, поэтому легко завязал дружеские отношения с сыном посла, хотя тот был на 10 лет младше и учился в средней школе. Много лет спустя Вайцзеккер защитил докторскую диссертацию под руководством Гейзенберга и стал одним из его немногих близких друзей.

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии