Доказано, что благодаря новым методам дети могут без особого напряжения научиться читать с двухлетнего возраста, писать — с трехлетнего; школьники первого класса одолевают начатки алгебры и экономики, третьего класса знакомятся с теорией относительности, пятого — с дифференциальным и интегральным исчислением, а в старших классах овладевают сложными разделами математики и физики, химии и биологии на уровне вузовских программ (по крайней мере, для первых курсов).
Чтобы разрешить проблемы, выдвинутые перед системой образования научно-технической революцией, мало одних лишь педагогических нововведений. Нужно опять-таки дальновидное общегосударственное планирование. Хотя бы потому, что сроки обучения охватывают две-три пятилетки. И контингенты будущих специалистов, которые готовятся сегодня, должны соответствовать количественно и качественно завтрашней структуре народного хозяйства, его ожидаемым потребностям в кадрах всех профилей.
Впрочем, разве социалистическое государство не доказало, что оно способно решать подобные проблемы наилучшим образом?
Итак, вполне реальная возможность повысить «творческий КПД» выпускников, как и воспрепятствовать удлинению сроков обучения, невзирая на стремительно растущий объем знаний. Ну а что противопоставить «мегабитовым бомбам»? Нужен настоящий переворот в индустрии информации, сравнимый с революцией, которую вызвало некогда изобретение книгопечатания.
Больше всего надежд возлагается на новую технику — прежде всего электронно-вычислительную. Создаются машины-переводчики, автоматизированные информационно-поисковые системы, электронные энциклопедии и справочники. Разрабатываются способы микрокопирования текстов; поговаривают о том, что прогресс радиоэлектроники рано или поздно приведет к сверхкомпактным и в то же время сверхвместительным хранилищам информации: так, не исключено, что тогда содержание всей Большой Советской Энциклопедии удастся втиснуть в объем булавочной головки. А космические ретрансляторы типа нашей «Молнии» помогут организовать поистине «молниеносный» обмен информацией между исследовательскими учреждениями, учебными заведениями, предприятиями и библиотеками в общегосударственных и даже в международных масштабах: небесный посредник моментально передаст нужный чертеж или текст в любой уголок страны прямо на телеэкран заказчика, минуя в случае надобности издательства, где рукописи могут залежаться и состариться еще до выхода в свет.
Все это проекты. И путь к их осуществлению нелегок и не скор. Но проблемы, связанные с ними, уже поставлены в повестку дня. Ибо уже сейчас 40–70 процентов всех расходов на науку могут теряться при неполном использовании и повторном получении ее результатов.
Таких проблем, понятно, немало. И для их решения требуется мобилизовать не только интеллектуальные усилия многочисленных исследовательских коллективов. Нужны все новые капиталовложения. Между тем они уже огромны. И продолжают увеличиваться. Но у любого общества, сколь бы богатым оно ни было, средства не безграничны. И проблема их наиболее разумного распределения всегда стояла и будет стоять перед финансовыми органами. Стоит она и перед нами. Конечно, ее решение в условиях плановой экономики упрощается. Но это отнюдь не значит, что оно дается без труда, даже если речь идет не обо всем бюджете в целом, а лишь об одной из многих его составных частей. Скажем, об ассигнованиях на науку. Ведь и в более узких рамках — например, в масштабах Академии наук СССР — тоже нелегко распределить народные деньги по всем многочисленным статьям расходов так, чтобы получить максимальный эффект.
Понятно, почему так важен здесь подход рачительного хозяина, знающего цену каждой копейке; подход не местнический, когда свои посевы на ниве знаний кажутся более значительными, чем любые прочие, а подлинно государственный — тот, что в каждом из нас смолоду воспитывается социалистическим обществом. И разве может он быть чужд нашим ученым, пусть даже по самому роду своей деятельности далеким от «всяких там бухгалтерских материй»? Даже там, где, казалось бы, не очень уместно ставить вопрос по-бухгалтерски прямо — дескать, расходы-то растут, а доходы?
В 1967 году под Серпуховом пущен новый ускоритель. Разгоняя заряженные частицы до скоростей, близких к предельно возможной — световой, он способен сообщать им энергию до 70 с лишним миллиардов электрон-вольт (70 гигаэлектрон-вольт, сокращенно — 70 Гэв). Тогда это была самая большая мощность в мире. Недавно в США сооружен ускоритель на 200 Гэв. А в СССР спроектирован ускоритель на 1000 Гэв.
Но чем мощнее эти сложнейшие машины, тем они дороже. Самый первый циклотрон (он был изобретен и собственноручно изготовлен американцем Э. Лоуренсом в 1930 году) имел довольно низкий потолок мощности — чуть больше тысячной доли Гэв. Зато и стоил всего 1000 долларов. На брукхейвенский синхрофазотрон мощностью 33 Гэв, в создании которого участвовали сотни фирм, затрачено 34 миллиона долларов — так сказать, по миллиону за один Гэв.