По существу, с помощью функции М должны подводиться итоги поиска на всем дереве ниже узла А и определяться оценка позиции А.
Посмотрим, в чем заключается цель подобных действий. Если можно было бы произвести поиск на всем дереве перебора, то мы смогли бы использовать найденную в каждом узле оценку S для принятия решения о том, какой следующий ход лучше всего сделать. Если, однако, оценка S дается просто в виде числа, то на это" основе невозможно будет провести значительные рассуждения, требуемые для анализа существующей ситуации.
Если значение S(B) невелико, то можно предположить, что В - неудачная позиция. Но если мы хотим, чтобы генератор ходов не повторял своих прежних ошибок, сообщение S должно включать некоторую дополнительную информацию относительно того, чем нас не удовлетворяет позиция В или как поступить в данном случае. Нам фактически требуется итоговое объяснение того, что обнаружено в процессе поиска; поскольку мы работаем с деревом перебора, нам требуется также рекурсивное суммирование подобных резюме.
Рассмотрим проблему, названную нами "расхождением резюме". Если резюме для ситуации А содержит (в общем случае) любое явное описание для В и С, то существует опасность того, что любая схема рекурсивного описания будет повторять дерево ходов; это приведет к столь же длительному поиску итогового сообщения, как и поиску самого решения. Чтобы этого не произошло, можно воспользоваться довольно простым способом - ограничить размеры самого резюме. В этом случае следует позаботиться о том, чтобы избежать сильного уменьшения информативности сообщений. Во фреймах-описаниях важные черты и отношения, находящиеся на верхних уровнях, могут служить в качестве резюме, а вспомогательные описания становятся доступными лишь по необходимости. Вопрос о том, какая часть проанализированного дерева должна оставаться в долговременной памяти, а какая отбрасываться после того, как сделан очередной ход, зависит от других аспектов использования участником игры всего накопленного им опыта.
Какие принципы должны лежать в основе образования резюме? И в этом вопросе концепция фреймов демонстрирует свою гибкость. Вместо того чтобы попытаться ограничить сообщения какими-то жесткими форматами, мы может построить набор "резюме"-фреймов для каждого данного случая; любой фрейм будет вызываться, когда его терминалы подходят к описаниям ситуаций более низких уровней, а маркеры согласуются с текущими целями. Таким образом, каждый из этих фреймов выполняет свою работу только тогда, когда он соответствует текущей ситуации. Например, у человека могут быть самые разные фреймы типа "шахматной вилки". Если конь занимает такую позицию, что угрожает одновременно и шахом, и взятием ладьи, то активируется фрейм вилки, соответствующий следующему условию: при любом из двух возможных ходов теряется та фигура, которая не изменит своей позиции. Как только будет активирован этот фрейм, он может дать конкретную рекомендацию, вероятно, следующего содержания: генератор ходов того игрока, который попадает под вилку, должен выяснить, не может ли какой-нибудь ранее сделанный ход обеспечить защиту того поля, откуда исходит угроза вилки.
3.8. Фреймы в качестве парадигм