4. Но далее, смысл есть 4) покой, и музыкальная форма есть временное выражение смыслового покоя. В пространстве подвижной покой создает окружность. В музыке подвижной покой создается при помощи принципа возвращения к исходному пункту. Это — общий принцип для неисчислимого количества отдельных музыкальных построений. Вернуться к исходному пункту — это значит, говоря вообще, достигнуть намеченной цели. Когда начинается пьеса, она ставит себе как бы некий вопрос, задается какою–то целью. Развитие пьесы должно показать, как этот вопрос решается и как эта цель достигается. Но так как никаких ответов и никаких достижений не может быть помимо и вне самого музыкального произведения, то оно — само для себя и вопрос и ответ, и поставление цели и достижение ее. Другими словами, оно — тот самый «круг», движение по которому не выходит из его пределов и потому как бы покоится; оно — тот шар, который хотя и движется, но в то же время и покоится, т. е. вращается в себе. Это «вращение в себе», «пребывание на месте», подвижной покой музыкального произведения выражается в том, что после перехода первого элемента в измененный этот измененный элемент должен опять как–то прийти в состояние неизменности. Обогатившись новым содержанием, первоначальный элемент обретает самого себя в новой сфере; и как только после пережитых судеб он вновь находит себя, — произведение кончено и «круг» музыкальных судеб завершен. Отсюда, между прочим, разгадка и диалектического смысла всякой симметрии, в которой, напр., содержится равнозначность правой и левой стороны, равновесие одной и другой тяжести и т. д. Равновесие и есть это пространственно–временное выражение категории подвижного покоя.
5. Наконец, смысл есть нечто 5) одно, и музыкальная форма есть выражение смысловой единичности. Это значит, что как принцип кратного отражения, так и принцип равновесия подчиняются некоему единому заданию, которое и руководит конкретным проведением этих принципов. Это есть та ось симметрии, та невидимая точка, которая незримо управляет всем произведением и в отношении к которой ориентирована любая мельчайшая его часть.
6. Итак, если то идеальное число, которое выражается в музыке, мы определяем как единичность подвижного покоя самотождественного различия, то выражение этого числа в музыке дает неделимую индивидуальность равновесия кратных отражений. Это — диалектически необходимый момент в музыкальной форме, поскольку последняя есть выражение чистого числа. Отсюда, раз число есть, по нашим исследованиям, то первичное, что лежит в основе музыки, — мы должны и при анализе музыкального произведения уметь прежде всего снимать с него эту числовую фигурность, эту характерную для данной пьесы индивидуальность равновесия кратных отражений.
7[161]. Заметим, что в простейшей форме эти пять категорий, входящих в структуру числа, даны в том, что в теории музыки называется тональностью. Тональность ведь и представляет собою форму сочетания интервалов, в которой дается два одинаковых интервала и один новый, причем эта система повторяется. Тут налицо все наши пять категорий. Если взять до мажор, то наличие ге наряду с начальным do — выражает категорию смыслового различия; повторение интервала do–re и, след., получение тона mi — выражает смысловую категорию тождества; повышение mi на полутон (новый интервал) и, след., получение тона fa — выражает категорию смыслового движения; повторение этого тетрахорда и получение остальных тонов гаммы создает категорию покоя, возвращение к тону do, хотя, как сказано, уже в новой обстановке и с обогащенным содержанием; наконец, полученный звукоряд есть нечто индивидуальное, не похожее на другой звукоряд, данный, напр., в новом регистре или вообще в новой обстановке с новым взаимоотношением тонов, и этим выражается здесь категория единичности. Тональность или, вернее, гамма и есть, таким образом, простейшее временное выражение идеально–фигурного числа как единичности подвижного покоя самотождественного различия. Тональность — звучащее число в полноте составляющих его пяти категорий.
8. Однако это слишком уже простая форма выражения идеального числа. Можно брать не просто тоны, а целые фразы, такты. И в них мы также должны уметь находить индивидуальность равновесия кратных[162] отражений. Но тут я умолкаю, и слово должно принадлежать профессору Г. Э. Конюсу, который дал великолепную теорию музыкального анализа, приводя как раз к законам равновесия кратных отражений и пользуясь исключительно эмпирическим, вычислительным и сравнительным методом, без помощи диалектики и философии. Мне кажется, тут одинаково могут праздновать победу и диалектическая философия, и эмпирическая эстетика, наконец–то любезно подающие друг другу руки после долгих лет взаимной вражды и блуждания по темным и непроходимым закоулкам.