Читаем Форма. Стиль. Выражение полностью

4. Но далее, смысл есть 4) покой, и музыкальная форма есть временное выражение смыслового покоя. В пространстве подвижной покой создает окружность. В музыке подвижной покой создается при помощи принципа возвращения к исходному пункту. Это — общий принцип для неисчислимого количества отдельных музыкальных построений. Вернуться к исходному пункту — это значит, говоря вообще, достигнуть намеченной цели. Когда начинается пьеса, она ставит себе как бы некий вопрос, задается какою–то целью. Развитие пьесы должно показать, как этот вопрос решается и как эта цель достигается. Но так как никаких ответов и никаких достижений не может быть помимо и вне самого музыкального произведения, то оно — само для себя и вопрос и ответ, и поставление цели и достижение ее. Другими словами, оно — тот самый «круг», движение по которому не выходит из его пределов и потому как бы покоится; оно — тот шар, который хотя и движется, но в то же время и покоится, т. е. вращается в себе. Это «вращение в себе», «пребывание на месте», подвижной покой музыкального произведения выражается в том, что после перехода первого элемента в измененный этот измененный элемент должен опять как–то прийти в состояние неизменности. Обогатившись новым содержанием, первоначальный элемент обретает самого себя в новой сфере; и как только после пережитых судеб он вновь находит себя, — произведение кончено и «круг» музыкальных судеб завершен. Отсюда, между прочим, разгадка и диалектического смысла всякой симметрии, в которой, напр., содержится равнозначность правой и левой стороны, равновесие одной и другой тяжести и т. д. Равновесие и есть это пространственно–временное выражение категории подвижного покоя.

5. Наконец, смысл есть нечто 5) одно, и музыкальная форма есть выражение смысловой единичности. Это значит, что как принцип кратного отражения, так и принцип равновесия подчиняются некоему единому заданию, которое и руководит конкретным проведением этих принципов. Это есть та ось симметрии, та невидимая точка, которая незримо управляет всем произведением и в отношении к которой ориентирована любая мельчайшая его часть.

6. Итак, если то идеальное число, которое выражается в музыке, мы определяем как единичность подвижного покоя самотождественного различия, то выражение этого числа в музыке дает неделимую индивидуальность равновесия кратных отражений. Это — диалектически необходимый момент в музыкальной форме, поскольку последняя есть выражение чистого числа. Отсюда, раз число есть, по нашим исследованиям, то первичное, что лежит в основе музыки, — мы должны и при анализе музыкального произведения уметь прежде всего снимать с него эту числовую фигурность, эту характерную для данной пьесы индивидуальность равновесия кратных отражений.

7[161]. Заметим, что в простейшей форме эти пять категорий, входящих в структуру числа, даны в том, что в теории музыки называется тональностью. Тональность ведь и представляет собою форму сочетания интервалов, в которой дается два одинаковых интервала и один новый, причем эта система повторяется. Тут налицо все наши пять категорий. Если взять до мажор, то наличие ге наряду с начальным do — выражает категорию смыслового различия; повторение интервала do–re и, след., получение тона mi — выражает смысловую категорию тождества; повышение mi на полутон (новый интервал) и, след., получение тона fa — выражает категорию смыслового движения; повторение этого тетрахорда и получение остальных тонов гаммы создает категорию покоя, возвращение к тону do, хотя, как сказано, уже в новой обстановке и с обогащенным содержанием; наконец, полученный звукоряд есть нечто индивидуальное, не похожее на другой звукоряд, данный, напр., в новом регистре или вообще в новой обстановке с новым взаимоотношением тонов, и этим выражается здесь категория единичности. Тональность или, вернее, гамма и есть, таким образом, простейшее временное выражение идеально–фигурного числа как единичности подвижного покоя самотождественного различия. Тональность — звучащее число в полноте составляющих его пяти категорий.

8. Однако это слишком уже простая форма выражения идеального числа. Можно брать не просто тоны, а целые фразы, такты. И в них мы также должны уметь находить индивидуальность равновесия кратных[162] отражений. Но тут я умолкаю, и слово должно принадлежать профессору Г. Э. Конюсу, который дал великолепную теорию музыкального анализа, приводя как раз к законам равновесия кратных отражений и пользуясь исключительно эмпирическим, вычислительным и сравнительным методом, без помощи диалектики и философии. Мне кажется, тут одинаково могут праздновать победу и диалектическая философия, и эмпирическая эстетика, наконец–то любезно подающие друг другу руки после долгих лет взаимной вражды и блуждания по темным и непроходимым закоулкам.

Перейти на страницу:

Похожие книги

Айседора Дункан. Модерн на босу ногу
Айседора Дункан. Модерн на босу ногу

Перед вами лучшая на сегодняшний день биография величайшей танцовщицы ХХ века. Книга о жизни и творчестве Айседоры Дункан, написанная Ю. Андреевой в 2013 году, получила несколько литературных премий и на долгое время стала основной темой для обсуждения среди знатоков искусства. Для этого издания автор существенно дополнила историю «жрицы танца», уделив особое внимание годам ее юности.Ярчайшая из комет, посетивших землю на рубеже XIX – начала XX в., основательница танца модерн, самая эксцентричная женщина своего времени. Что сделало ее такой? Как ей удалось пережить смерть двоих детей? Как из скромной воспитанницы балетного училища она превратилась в гетеру, танцующую босиком в казино Чикаго? Ответы вы найдете на страницах биографии Айседоры Дункан, женщины, сказавшей однажды: «Только гений может стать достойным моего тела!» – и вскоре вышедшей замуж за Сергея Есенина.

Юлия Игоревна Андреева

Музыка / Прочее