Не только одна пара категорий — различие и тождество — нашла свое выражение в законе золотого деления. Именно, раз мы переходим от ц к б, а от б к м, то тут мы невольно соблюдаем некую постепенность, некое движение. Переходя от б к м, а затем от ц опять все к тому же ж, мы, конечно, давали бы некую статическую формулу, в которой не было бы момента подлинного передвижения по пространству целого. Но именно формула (3) выражает и движение, а как такая, следовательно, и покой, ибо тут дается определенно положенное движение, дан переход и — остановка. Однако мы уже знаем, что эйдос есть единство не четырех, а пяти категорий, и потому эйдос золотого деления есть не что иное, как все та же единичность подвижного покоя самотождественного различия, данная как выражение алогических стихий времени, пространства или любой материальности. В тождестве и различии мы установили отношение между целым и частями и увидели, что это отношение, при всем различии частей, везде одинаковое; в движении и покое мы установили переход от целого к большей, от большей к меньшей, от меньшей еще к более малой части и т. д.; в подвижном покое самотождественного различия мы устанавливаем одинаковость отношения целого к части и частей между собою при всяких переходах по пространству целого, т. е. некое подвижное равновесие целого с частью; наконец, в единичности мы закрепляем определенную комбинацию частей и определенную фигуру их отношения между собою и к целому, ибо ведь переходить от целого к частям можно было на тысячу ладов. Отсюда подлинный феноменолого–диалектический смысл закона золотого деления и его разгадка заключается в том, что он есть принцип выражения смысла в аспекте его единичности подвижного покоя самотождественного различия. Диалектика закона золотого деления есть диалектика категорий тождества и различия, которые, будучи перенесены в сферу алогического материала (пространственных наличий, звуков) в своем подвижном равновесии, специфическим образом организуют этот материал, так что в результате всего этот материал должен своими слепыми материальными средствами воплотить и выразить целиком это подвижно–равновесное самотождественное различие. Таким образом, формула (3), если брать ее буквально, выражает не только тождество и различие, но и постепенность перехода.
6. Чтобы не впасть в ошибку, необходимо помнить, что формулы (1), (2), (3) имеют не просто математический смысл, вернее, не просто арифметический смысл. Надо помнить, что арифметика оперирует не с чистыми числами в полном смысле этого слова, но с количествами. Даже когда арифметика говорит об отвлеченных числах, все равно она их рассматривает главным образом с точки зрения их счетности, сосчитанности. Мы же, говоря о ц, б, м, имеем в виду как раз не абсолютные количества, но ту идею порядка, которая эти количества превращает в некие числовые, смысловые фигурности. Равенство (1) поэтому мы читаем так: тождество — везде в выражении одинаково присутствует, или: целое равно своей части. А равенство (2) так: различие везде одинаково присутствует в выражении, или: целое не равно своей части. Сравнивая эти два положения, мы можем поступить двояко — или говорить о различии тождественного, или о тождестве различного (что, конечно, есть одно и то же). Если мы говорим о различии тождественного, то, поскольку под тождеством мы понимаем не просто количественное тождество в абсолютном смысле, но именно тождественность повсеместного присутствия целого, тождественность отношения целого к части, — мы должны это отношение приравнять к отношению заведомо различествующих частей между собою. Если же мы будем говорить о тождестве различного, то, взявши отношение заведомо различных частей, мы должны то же самое отношение находить и во всех других частях. Чисто количественно формулу (3) нельзя понимать уже по одному тому, что и отношение