Но около поверхности земли имеется электрическое поле. В ясную погоду над пустынной равниной его средняя напряженность равна 100–130 В/м, над океанами 80–90 В/м. Почему мы говорим о пустынной равнине? Потому что присутствие предметов и живых существ сильно изменяет земное электрическое поле. С высотой электрическое поле Земли быстро убывает (так, на высоте 1,5 км оно уже в 4 раза слабее) и исчезает на расстоянии 50–60 км от поверхности.
Заряд Земли и её поле изменяются в течение суток: они минимальны в 3–4 часа по Гринвичу и максимальны около 19 часов – на всей Земле!
Из-за избытка положительных ионов в воздухе к земле постоянно течёт слабый ток. Полный ток, достигающий поверхности земли, равен 1800 А, то есть ежесекундно отрицательный заряд Земли уменьшается на такое же количество кулон. Казалось бы, из-за этого Земля должна быстро потерять свой заряд, однако этого не происходит. В чём же причина?
Разгадку подсказал тот факт, что около 19 часов по Гринвичу достигает максимума степень грозовой активности на всей Земле (в основном это тропические грозы) – тогда же, когда максимально электрическое поле Земли. Именно молнии снабжают Землю отрицательным зарядом. Слабые атмосферные токи разряжают Землю, а молнии заряжают. В среднем в Землю бьёт 60–100 молний в секунду, и каждая молния приносит отрицательный заряд до 20 Кл.
Так выглядит сильно упрощённая картина. По современным представлениям электрическое поле Земли связано со множеством процессов, происходящих в атмосфере, ионосфере и даже магнитосфере Земли, и все эти процессы объединяют общим понятием – Глобальная электрическая цепь.
Во время грозы электрическое поле под грозовым облаком меняет своё направление на противоположное, а его напряженность достигает 100 тысяч В/м.
Геомагнитное поле
Земля обладает весьма сильным магнитным полем по сравнению с другими планетами земной группы. Вблизи Земли оно имеет такой вид, будто внутри земного шара находится постоянный полосовой магнит, ось которого на 10° отклонена от оси вращения Земли. Соответственно, магнитные полюса отстоят от географических на 2–3 тысячи км. Как уже говорилось, этот магнит образован токами во внешнем жидком ядре Земли. Схематично геомагнитное поле вблизи Земли изображено на рис. 19. Линии индукции магнитного поля – это как раз те воображаемые линии, вдоль которых выстраиваются стрелки компасов. Там, где линии гуще, магнитное поле сильнее. Из рисунка мы видим, что вблизи полюсов магнитное поле более сильное, чем вблизи экватора. Индукция геомагнитного поля составляет десятки микротесла (миллионных долей тесла: мкТл), и это в тысячи раз меньше, чем локальные магнитные поля, создаваемые обычными бытовыми приборами.
На экваторе магнитная индукция в настоящее время равна 34 мкТл, на широте Москвы 50 мкТл, вблизи полюсов около 66 мкТл. В области Курской магнитной аномалии магнитное поле 100 мкТл.
Геомагнитное поле в тысячи раз слабее поля постоянного магнита, который вы можете купить в магазине.
Магнитное поле, создаваемое токами в ядре, называют главным, и его вклад в общее поле составляет 95 %. Есть ещё аномальное поле, создаваемое намагниченными горными породами, и внешнее геомагнитное поле, связанное с солнечно-земными взаимодействиями (о нём поговорим чуть позже).
На большом расстоянии от Земли геомагнитное поле несимметрично: со стороны Солнца оно «сплющено» и простирается на 10 земных радиусов, а в направлении от Солнца магнитное поле образует шлейф, тянущийся на сотни тысяч километров – дальше орбиты Луны. Такая форма возникает из-за солнечного ветра. Солнечный ветер – это непрерывный поток высокоэнергетичных заряженных частиц, главным образом протонов и электронов. Эти заряженные частицы захватываются и удерживаются магнитным полем Земли, как в ловушке. Их траектории «наматываются» на линии поля, и частицы кочуют от одного полюса к другому, постепенно растрачивая свою энергию в столкновениях с молекулами атмосферы. Ближе всего они приближаются к Земле в районе полюсов, и мы видим их атаки как полярные сияния.
Рис. 19. Линии индукции магнитного поля вблизи Земли