Одноименные заряды отталкиваются, а разноимённые – притягиваются, причём сила взаимодействия убывает обратно пропорционально квадрату расстояния между зарядами. Это закон Кулона. Математически он очень напоминает закон всемирного тяготения Ньютона. Но надо отметить, что электрическое взаимодействие гораздо мощнее гравитационного. К примеру, сила электрического отталкивания двух электронов больше силы их гравитационного притяжения на таком же расстоянии в 1043 раз! У такого числа и названия-то нет. Поэтому электрическое взаимодействие доминирует «в масштабах человека», а гравитационное взаимодействие становится заметным только при огромной массе хотя бы одного из тел.
Самое древнее, известное ещё древним грекам электрическое явление – электризация трением. При этом мизерная доля лёгких электронов переходит с одного тела на другое; тела заряжаются разноимённо и притягиваются друг к другу. Это явление называют также статическим электричеством. Кстати, не обязательно что-то специально натирать, статический заряд часто появляется без нашего желания: шагаешь по синтетическим коврам, съезжаешь с пластиковой горки, снимаешь синтетическую рубашку или шерстяной свитер, выходишь из автомобиля, наливаешь бензин из канистры – рождается статический заряд. А поднесёшь потом руку к батарее или к другому человеку, и вот вам микромолния, то есть электрический разряд – кратковременный ток через воздушный промежуток между телами. Разряд статического электричества для человека в принципе не представляет особой опасности. Но он неприятен. А иногда и пожароопасен. Так, при заправке автомобиля бензином из пластмассовой канистры могут воспламениться пары бензина.
Из-за статического электричества предметы притягивают к себе пыль. Протрешь мебель сухой тряпкой – пыль тут же вернётся. Надо проводить влажную уборку, она снимает статический заряд с поверхности, и предмет становится ненаэлектризован на некоторое время.
Электромагнитное поле
Заряды чувствуют друг друга на расстоянии благодаря электрическому полю – особой материальной среде, возникающей вокруг каждого заряда. Первым об этом заговорил Майкл Фарадей в 1830 году, а ещё на сто лет раньше – российский физик Рихман, тот самый, который был убит молнией во время изучения грозы.
Электрические поля пронизывают буквально всё вокруг: они внутри атомов, между молекулами. Они окружают заряженные тела. Электрическое поле создаётся и самим земным шаром (об этом подробнее в следующей главе).
А что такое магнитное поле? Оказывается, когда заряды движутся, между ними возникает дополнительное, гораздо более слабое, взаимодействие. Если одноимённые заряды движутся в одну сторону, то будет дополнительное притяжение, в противоположные стороны – отталкивание. Это дополнительное взаимодействие движущихся зарядов называют магнитным взаимодействием. А так как оно очень слабое по сравнению с электрическим, то заметить его можно, либо когда заряды движутся очень быстро (почти со скоростью света), либо когда их очень много, причём положительных и отрицательных примерно поровну. Так, упорядоченным движением электронов среди положительных ионов кристаллической решётки обусловлено магнитное взаимодействие проводов с током.
Движущийся заряд создаёт вокруг себя не только электрическое поле, но ещё и «довесок» к нему – магнитное поле. Это просто установившийся способ описывать единое явление: поле вокруг заряда – электромагнитное поле. Электрическое поле действует на любой заряд, магнитное – только на движущий заряд. Разделение единого поля на электрическую и магнитную составляющие – дань исторической традиции.
В дальнейшем нам понадобятся количественные характеристики полей. Величину электрического поля характеризует его напряжённость (Е), единицей её измерения является вольт на метр (В/м). У магнитного поля есть разные характеристики и разные единицы их измерения, но чтобы не запутаться, мы будем использовать для его описания в этой книге магнитную индукцию (В), единицей измерения которой является тесла (Тл).
Электрическая напряжённость