Читаем Физика пространства - времени полностью

Таким образом, выражение для импульса быстро движущихся частиц существенно отличается от предсказываемого теорией Ньютона. Однако процедура определения массы некоторой новой частицы, принявшей участие в процессе столкновения, в принципе одна и та же как в релятивистской, так и в ньютоновской механике. Её суть может быть выражена по-разному: 1) как принцип действия и противодействия; 2) как принцип, связывающий отдачу ружья с импульсом пули; 3) как закон сохранения импульса.

Определение массы неизвестной частицы по упругому столкновению её со стандартной частицей

Рис. 86. Скорости до и после лобового упругого столкновения, наблюдаемые в той системе отсчёта, где полный импульс равен нулю.

Рассмотрим специально лобовое упругое столкновение: 1) стандартной частицы массы m (пусть величина этой массы произвольно устанавливается Международным комитетом мер и весов) и 2) исследуемой частицы, обладающей пока неизвестной массой m величину которой нам нужно определить. Говоря, что столкновение является лобовым и упругим, мы имеем в виду существование такой системы отсчёта, в которой зарегистрированные до и после соударения данные о скоростях частиц обнаруживают симметрию, изображённую на рис. 86. Эта симметрия состоит в том, что полный импульс меняет свой знак на обратный в результате соударения. Но ведь полный импульс при соударении сохраняется! Значит, этот полный импульс должен быть равен нулю. Итак, импульсы наших двух частиц после столкновения должны удовлетворять условию

m

dx

d

+

m

dx

d

=

0.

Из этого соотношения можно получить выражение неизвестной массы в единицах известной массы стандартной частицы:

m

m

=

(-dx/d)

(dx/d)

=

=

-x

(t)^2-(x)^2

x

(t)^2-(x)^2

x

.

(75)

Здесь x и x — расстояния, пройденные каждой из двух частиц из точки соударения до точек наблюдения, а t и t — соответствующие времена движения. В случае упругого столкновения нерелятивистских частиц правая сторона равенства (75) принимает ньютоновский вид

m

m

=-

=

-x/t

x/t

ньютоновский

предел

.

(76)

Простота релятивистского определения импульса не может быть вполне оценена, пока импульс не рассматривается как пространственная часть 4-вектора энергии-импульса. И только тогда становится ясно, что баланс энергии в процессах столкновения может служить косвенной проверкой закона сохранения импульса, так что к бесчисленному множеству непосредственных экспериментальных способов проверки закона сохранения импульса добавляется ещё этот косвенный способ.

12. 4-ВЕКТОР ЭНЕРГИИ-ИМПУЛЬСА

Для того чтобы представить себе импульс и энергию как части более обширного единого целого, полезно вспомнить, как пространство и время объединяются, становясь частями также более обширного единого целого. Рассмотрим переход частицы из мировой точки (события) A в пространстве-времени в соседнюю мировую точку B. Идея объединения пространства и времени состоит в том, чтобы рассматривать 4-вектор, соединяющий A и B 1). Компоненты этого 4-вектора (смещения dx, dy, dz и dt) имеют разные значения в зависимости от того, в какой системе отсчёта рассматривается этот 4-вектор. Несмотря на произвольный способ описания 4-вектора AB, который мы выберем, этот 4-вектор оказывается вполне строго определён. Не только интервал имеет одну и ту же величину во всех системах отсчёта! Что ещё более важно, расположение самих событий A и B, а значит, и положение 4-вектора AB в пространстве-времени определяются так же строго, как положение двух городских ворот, независимо от того, какие координаты мы используем, и даже независимо от того, используем ли мы вообще какие бы то ни было координаты.

1) В 1872 г. в своей лекции в ознаменование вступления в должность профессора Эрлангенского университета Феликс Клейн провозгласил новую точку зрения на геометрию, что оказало решающее влияние на современную геометрию. Ключевой пункт его идеи состоял в проведении различия между геометриями разного рода, исходя из законов преобразования компонент величин. Например, можно с полной ясностью увидеть различие между эвклидовой геометрией и лоренцевой геометрией реального физического мира на основании используемого ныне определения вектора:

4-вектор определяется заданием в каждой инерциальной системе отсчёта четырёх чисел (различных в разных системах!), причём эти числа преобразуются при переходах между системами отсчёта по формулам преобразования Лоренца (32).

3-вектор определяется заданием в каждой эвклидовой системе координат трёх чисел (компонент, различных в разных системах координат!), причём эти числа преобразуются при переходах между системами координат по соответствующим формулам преобразования поворота геометрии Эвклида (29).

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука