Читаем Физика пространства - времени полностью

Когда симметричные относительно друг друга скорости сталкивающихся и разлетающихся частиц в системе отсчёта ракеты будут меньше этой величины, угол между векторами скорости разлетающихся частиц в лабораторной системе будет отличаться от прямого менее чем на 10^2 рад. В лабораторной системе отсчёта, где одна из частиц первоначально покоилась, скорость налетающей частицы поэтому должна быть меньше, чем 2 r2/7.

41. Примеры предельных переходов к механике Ньютона

Пример

движения

Корректно ли в этом примере

использование механики Ньютона

?

См. в тексте

(стр.

118

)

1/37200

Да, потому что

1/7

10

Да

1/137

Да

79/137

Нет

4/30

Да, на пределе

10

^2

Да

42. Замедление времени для -мезона — подробный пример

Решение дано в тексте.

43. Замедление времени для -мезона

Если бы замедления времени не происходило, то из условий задачи следовало бы, что на расстоянии 5,4 м от мишени оставалась бы нераспавшейся половина мезонов. В упражнении 10 [см. формулу (44)] было выяснено, что множитель, характеризующий замедление времени, — это ch r. Следовательно, с точки зрения лабораторной системы отсчёта в рассматриваемом опыте -мезоны будут «жить» в течение срока, в 15 раз превышающего их «собственное время жизни»— то, которое наблюдается в системе отсчёта ракеты, где они покоятся. В лаборатории те же мезоны летят с околосветовыми скоростями, и поэтому они смогут пролететь около 15 «характерных расстояний» (см. таблицу в тексте), т.е. приблизительно 80 м, прежде чем их количество в пучке вследствие распада снизится вдвое по сравнению с первоначальным.

44. Аберрация света звёзд

Ориентируем ось x в направлении относительного движения. В покоящейся по отношению к Солнцу лабораторной системе отсчёта свет, приходящий от далёких звёзд B и D, будет иметь компоненты скорости y=±1 и x=0. В системе отсчёта ракеты (Земли) скорость распространения этого света также равна единице, но теперь x-компонента его скорости будет равна -r, т.е. относительной скорости движения двух рассматриваемых систем отсчёта мимо друг друга. Синус угла равняется x-компоненте скорости, разделённой на абсолютную величину скорости:

sin

=

r

1

=

r

.

Этот вывод находится в согласии с результатами, полученными в упражнении 22.

45. Опыт Физо

Закон сложения скоростей (24) даёт

=(

'

+

r

)(

1

+

'

r

)^1

.

При малых r это выражение можно разложить по формуле бинома Ньютона, ограничиваясь лишь членами первой степени по r:

(

1

+

'

r

)^1

1

-

'

r

.

Используя это разложение в предыдущей формуле и вновь отбрасывая в окончательном результате члены, в которых r возводится в степень выше первой, получим требуемый ответ — формулу (62).

46. Черенковское излучение

Формула (63) непосредственно следует из построения на рис. 62. Чтобы испускать черенковское излучение в некоторой среде, частица должна в ней двигаться по крайней мере не медленнее, чем распространяется световой импульс в этой среде. Это видно из формулы (63): косинус угла никак не может быть больше единицы. Поэтому в люсите частица, для того чтобы давать черенковское излучение, должна двигаться по крайней мере со скоростью, равной 2/3 скорости света в пустоте. С другой стороны, угол в данном веществе будет максимален, когда его косинус имеет наименьшее значение, т.е. при наибольшем значении скорости частиц . Ясно, что не может превышать единицу, так что в люсите величина косинуса , равная 2/(3) всегда больше или равна 2/3. Соответствующий этому максимальный угол составляет 0,841 рад, или 48°,2.

47. Искривление лучей света звёзд Солнцем

Путь, равный диаметру Солнца, световой сигнал проходит за время, равное 1,4·10 м, или 4,7 сек; это и есть «эффективное время падения» светового луча, проходящего вплотную к поверхности Солнца. Полная скорость падения равна этому времени, умноженному на ускорение силы тяжести у поверхности Солнца (275 м/сек^2), так что составляет приблизительно 1300 м/сек, или 4,3·10 м пути за 1 м светового времени. Угол отклонения луча, если он малый, можно приблизительно определить как отношение полученной скорости падения к полной скорости света, т.е. к единице. Итак, мы предсказали, что угол, на который отклоняется световой луч, равен 4,3·10 рад. Общая теория относительности предсказывает вдвое больший эффект, что хорошо согласуется с данными наблюдений, приведёнными в конце упражнения.

48. Геометрическое истолкование

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука