Читаем Feynmann 4 полностью

Это сравнение показывает преимущества и недостатки тер­модинамики по сравнению с кинетической теорией. Прежде всего полученное термодинамически уравнение (45.14) — это точное соотношение, а (45.16) — всего-навсего приближение. Ведь нам пришлось предположить, что U приблизительно постоянна и что наша модель верна. Во-вторых, нам, быть мо­жет, никогда не удастся понять до конца, как газ переходит в жидкость, и все-таки уравнение (45.14) правильно, а (45.16)— это только приближение. В-третьих, хотя мы говорили о прев­ращении газа в жидкость, наши аргументы верны для любого перехода из одного состояния в другое. Например, переход твердое тело — жидкость описывается кривыми, очень похо­жими на кривые фиг. 45.3 и 45.4.

Фиг. 45.4. Диаграмма Р — V для цикла Карно с конденсирующимся в цилиндре паром.

Слева — все вещество переходит в жидкость. Чтобы полностью испарить ее при температуре Т, нужно добавить тепла L. При падении температуры от Т до Т—DT пар расширяется адиаба­тически.

Вводя скрытую теплоту плав­ления М/моль, мы получим формулу, аналогичную уравне­нию (45.14): (дPпл/дT)V=M/[T(VL-VS)]. Мы можем не знать ничего о кинетической теории процесса плавления, а все же получить правильное уравнение. Однако если мы узнаем кинетическую теорию, то сразу же получим большое пре­имущество. Уравнение (45.14) — это всего лишь дифферен­циальное уравнение, и мы еще совершенно не умеем находить постоянные интегрирования. В кинетической теории можно вычислить и эти постоянные, надо только придумать хорошую модель, описывающую все явление полностью. Итак, в каждой теории есть и хорошее, и плохое. Если познания наши слабы, а картина сложна, то термодинамические соотношения ока­зываются самым мощным средством. Когда же картина упро­щается настолько, что можно ее проанализировать теоретиче­ски, то лучше сначала попробовать выжать из этого анализа как можно больше.

Еще один пример: излучение черного тела. Мы уже гово­рили об ящике, содержащем излучение и ничего больше, и уже толковали о равновесии между излучением и осциллятором.

Мы выяснили также, что когда фотоны ударяются о стенки ящи­ка, они создают давление Р. Мы вывели формулу PV=U/3, где U полная энергия фотонов, а V — объем ящика. Если под­ставить U=3РV в основное уравнение (45.7),то обнаружится, что

Поскольку объем ящика не изменяется, можно заменить (дP/дT)V на dP/dT и получить обыкновенное дифференциальное уравне­ние. Оно легко интегрируется и дает lnP=4lnT+const, или Р=const·T4. Давление излучения изменяется как четвертая степень температуры, поэтому заключенная в излучении энер­гия U/V=P/3 тоже меняется как T4. Обычно пишут так: U/V=(4s/с)T4, где с — скорость света, а s— другая посто­янная. Термодинамика сама по себе ничего не скажет нам об этой постоянной. Это хороший пример и ее могущества, и ее бес­силия. Знать, что U/V изменяется как T4, — это уже большое дело, но узнать, чему именно равно U/V при той или иной тем­пературе, можно, только разобравшись в деталях полной тео­рии. У нас есть теория излучения черного тела и сейчас мы вы­числим а.

Пусть I(w)dw — распределение интенсивности, иначе говоря, поток энергии через 1 м2 за 1 сек в интервале частот между w и w+dw:

Распределение плотности энергии =

поэтому

U/V=Полная плотность энергии,

(Плотность энергии между w и w+dw),

Мы уже успели узнать, что

Подставляя выражение для I (w) в наше уравнение для U/V, получаем

Если сделать замену переменных x=hw/kT, то это выраже­ние примет вид

Этот интеграл — просто-напросто какое-то число, и мы можем найти его приближенно. Для этого надо лишь вычертить подын­тегральную кривую и подсчитать площадь под ней. Она прибли­зительно равна 6,5. Математики могут вычислить наш интеграл точно, он равен p4/15. Сравнивая это выражение с записан­ным ранее U/V=(4s/с)T4, мы найдем s:

Много ли энергии утечет за 1 сек из дырки единичной пло­щади, проделанной в стенке ящика? Чтобы найти поток энер­гии, умножим плотность энергии U/V на с. Еще нужно умножить на 1/4; эта четверть набегает вот по каким причинам. Во-первых, l/2 появляется из-за того, что мы вычисляем только вырвавшу­юся наружу энергию, и, во-вторых, если поток подходит к дыр­ке не под прямым углом, то вырваться ему труднее; это умень­шение эффективности учитывается умножением на косинус угла с нормалью. Среднее значение косинуса равно 1/2. Теперь понятно, почему мы писали U/V=(4s/c)T4: так проще выразить поток энергии сквозь маленькую дырку; если отнести поток к единичной площади, то он равен просто sT4.

* Поскольку (ex-1)-1 -x+е-2x +..., то интеграл равен

Но, поэтому, дифференцируя три раза по n, мы получаем

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука