Читаем Feynmann 1 полностью

Ньютон считал, что взаимодействие на расстоянии должно быть мгновенным. Но это, оказывается, неверно. Возьмем, на­пример, электрические силы. Пусть электрический заряд, рас­положенный в некоторой точке, вдруг начинает двигаться, тогда его действие на другой заряд в другой точке не будет мгновенным: существует небольшое запаздывание. При таком положении, даже если силы действия и противодействия равны между собой, импульсы не будут компенсироваться. Существует небольшой промежуток времени, в течение которого будет происходить нечто странное; в то время как первый заряд ис­пытывает какое-то воздействие силы и реагирует на нее изме­нением своего импульса, второй стоит как ни в чем не бывало и не изменяет импульса. На передачу влияния второму заряду через разделяющее их расстояние требуется некоторое время: «влияние» распространяется не мгновенно, а с некоторой конеч­ной (хотя и очень большой) скоростью 300 000 км/сек. В течение этого крохотного промежутка времени импульс частиц не со­храняется. Но, разумеется, после того как второй заряд испы­тает влияние первого, импульсы компенсируются, наступает полный порядок, но все-таки в течение некоторого момента за­кон был нарушен. Мы представляем дело таким образом, что в течение этого интервала существует импульс другого рода, чем импульс частиц mv, и это импульс электромагнитного поля. Если сложить его с импульсами частиц, то эта сумма в любой момент сохраняется. Однако тот факт, что электромагнитное поле может обладать импульсом и энергией, делает его реаль­ностью, а утверждение о том, что между частицами действуют силы, переходит в утверждение о том, что частица создает поле, которое в свою очередь действует на другую частицу. Само же поле имеет многие свойства, аналогичные частицам; оно может нести энергию и импульс. Для иллюстрации рассмот­рим еще один пример; в электромагнитном поле могут сущест­вовать волны, которые мы называем светом. И вот оказывается, что свет тоже несет какой-то импульс, так что когда он падает на предмет, то передает ему некоторое количество своего им­пульса. Это эквивалентно действию какой-то силы, ведь осве­щенный предмет изменяет свой импульс, как будто на него дей­ствует некоторая сила. Итак, падая на предмет, свет оказывает на него давление. Хотя это давление очень мало, но достаточно тонкими приборами его все же можно измерить.

Оказывается, что в квантовой механике импульс тоже не mv, а нечто совсем другое. Здесь уже трудно определить точно, что же такое скорость частицы, но импульс все-таки существует. Разница же состоит в том, что когда частицы действуют как частицы, то их импульс по-прежнему mv, но когда они дейст­вуют как волны, то импульс уже измеряется числом волн на 1 см: чем больше волн, тем больше импульс. Однако, несмотря на это различие, закон сохранения импульса справедлив и в квантовой механике. Неверными оказались уравнение Ньютона f = ma и все его выводы закона сохранения импульса, тем не менее в квантовой механике в конце концов этот закон продолжает действовать!

Глава 11

ВЕКТОРЫ

§ 1. Симметрия в физике

§ 2. Переносы начала

§ 3. Вращения

§ 4. Векторы

§ 5. Векторная алгебра

§ 6. Законы Ньютона в векторной записи

§ 7. Скалярное произведение векторов

§ 1. Симметрия в физике

В этой главе мы вводим понятие, которое среди физиков известно под названием симме­трия законов физики. Слово «симметрия» употребляется здесь в несколько необычном смыс­ле, и поэтому нужно его определить. Как же определить симметрию какого-либо предмета? Когда мы говорим, что изображение симметрично, то этим мы хотим сказать, что одна его часть такая же, как другая. Профессор Герман Вейль дал такое определение симметрии: предмет симметричен, если его можно подвергнуть какой-либо операции, после которой он будет выглядеть как и вначале. Например, если мы повернем вазу на 180° вокруг вертикальной оси и она не изменит своего внешнего вида, то мы говорим, что обе стороны вазы симметричны. Мы будем понимать определение Вейля в более широком смысле и говорить о симметрии зако­нов физики.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука