Читаем Фейнмановские лекции по физике. 7. Физика сплошных сред полностью

Уравнение получилось, конечно, сложное, но ничего не поде­лаешь, такова природа.

Если мы введем W=СXv, как делали это раньше, то наше уравнение можно записать в виде

Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то полу­чим

Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом СX(WXv), то получили бы диффузион­ное уравнение. Новый член означает, что вихри диффундируют в жидкости. При большом градиенте вихри расползаются в со­седние области жидкости.

Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности W диффундирует в окру­жающий дым, продолжая свое движение вперед вместе с вихрем.

§ 3. Число Рейнольдса

Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых спе­циальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла урав­нению (41.17).

Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D. Поток должен опреде­ляться уравнением (41.17) и

W=СXv (41.18)

с условием, что скорость на больших расстояниях равна не­которой постоянной V (параллельной оси х), а на поверхности цилиндра равна нулю. Так что

vя=vу=vz=0 (41.19)

при

x2+y2=D2/4.

Это полностью определяет математическую задачу.

Если вы вглядитесь в эти выражения, то увидите, что в зада­че есть четыре различных параметра: h, r, D и V. Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные раз­личные решения соответствуют разным значениям одного пара­метра. Такова наиболее важная общая вещь, которую мы мо­жем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения h/r, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D, т. е. вместо х, у, z мы вводим новые переменные х', у', z', причем

x=x'D, y=y'D, z=z'D.

При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы поло­жим v=v'V, то избавимся от V, а v' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D/V, так что мы должны сделать подстановку;

t=t'D/V. (41.20)

В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, д/дх перейдет в (1/D)(д/дх') и т. д., так что уравнение (41.18) превратится в

А наше основное уравнение (41.17) перейдет в

Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через:

Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид

и

с условиями ,

v=0 , для

х22 =1/4 (41.24)

и

vx=1, vy=vz=0

для

x2+y2+z2>>1.

Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V1и некоторого цилиндра диа­метром D1 а затем интересуемся обтеканием цилиндра другого диаметра D2другой жидкостью, то ноток будет одним и тем же при такой скорости V2, которая отвечает тому же самому числу Рейнольдса, т. е. когда

Перейти на страницу:

Похожие книги

12 великих трагедий
12 великих трагедий

Книга «12 великих трагедий» – уникальное издание, позволяющее ознакомиться с самыми знаковыми произведениями в истории мировой драматургии, вышедшими из-под пера выдающихся мастеров жанра.Многие пьесы, включенные в книгу, посвящены реальным историческим персонажам и событиям, однако они творчески переосмыслены и обогащены благодаря оригинальным авторским интерпретациям.Книга включает произведения, созданные со времен греческой античности до начала прошлого века, поэтому внимательные читатели не только насладятся сюжетом пьес, но и увидят основные этапы эволюции драматического и сценаристского искусства.

Александр Николаевич Островский , Иоганн Вольфганг фон Гёте , Оскар Уайльд , Педро Кальдерон , Фридрих Иоганн Кристоф Шиллер

Драматургия / Проза / Зарубежная классическая проза / Европейская старинная литература / Прочая старинная литература / Древние книги
Волчья тропа
Волчья тропа

Мир после ядерной катастрофы. Человечество выжило, но высокие технологии остались в прошлом – цивилизация откатилась назад, во времена Дикого Запада.Своенравная, строптивая Элка была совсем маленькой, когда страшная буря унесла ее в лес. Суровый охотник, приютивший у себя девочку, научил ее всему, что умел сам, – ставить капканы, мастерить ловушки для белок, стрелять из ружья и разделывать дичь.А потом она выросла и узнала страшную тайну, разбившую вдребезги привычную жизнь. И теперь ей остается только одно – бежать далеко на север, на золотые прииски, куда когда-то в поисках счастья ушли ее родители.Это будет долгий, смертельно опасный и трудный путь. Путь во мраке. Путь по Волчьей тропе… Путь, где единственным защитником и другом будет таинственный волк с черной отметиной…

Алексей Семенов , Бет Льюис , Даха Тараторина , Евгения Ляшко , Сергей Васильевич Самаров

Фантастика / Приключения / Боевик / Славянское фэнтези / Прочая старинная литература