Читаем Фейнмановские лекции по физике. 2. Пространство. Время. Движение полностью

Фиг. 16.2. Упругое столкновение одинаковых тел, движущихся с равными скоростями в противоположных направлениях, при раз­личном выборе систем координат.

Далее, напомним, что одно и то же столкновение выглядит по-разному, смотря по тому, как повернуты оси. Для удобства мы так повернем оси, чтобы горизонталь делила пополам угол между направлениями частиц до и после столкновения (фиг. 16.2,б). Это то же столкновение, что и на фиг. 16.2,а, но с повернутыми осями.

Теперь начинается самое главное: взглянем на это столкно­вение с позиций наблюдателя, движущегося на автомашине со скоростью, совпадающей с горизонтальной компонентой ско­рости одной из частиц. Как оно будет выглядеть? Наблюдателю покажется, что частица 1 поднимается прямо вверх (горизон­тальная компонента у нее пропала), а после столкновения падает прямо вниз по той же причине (фиг. 16.3, а).

Фиг. 16.3. Еще две картины того же столкновения (видимые из дви­жущихся автомашин).

Зато частица 2 движется совсем иначе, она проносится мимо с колоссальной скоростью и под малым углом (но этот угол и до и после столк­новения одинаков). Обозначим горизонтальную компоненту скорости частицы 2 через и, а вертикальную скорость части­цы 1 — через w.

Чему же равна вертикальная скорость utga частицы 2? Зная это, можно получить правильное выражение для импульса, пользуясь сохранением импульса в вертикальном направлении. (Сохранение горизонтальной компоненты импульса и так обеспечено: у обеих частиц до и после столкновения эта ком­понента одинакова, а у частицы 1 она вообще равна нулю. Так что следует требовать только сохранения вертикальной скорости utga.) Но вертикальную скорость можно получить, просто взглянув на это столкновение с другой точки зрения! Посмотрите на столкновение, изображенное на фиг. 16.3, а из автомашины, которая движется теперь налево со скоростью и. Вы увидите то же столкновение, но перевернутое «вверх ногами» (фиг. 16.3, б). Теперь уже частица 2 упадет и подскочит со скоростью w, а горизонтальную скорость и приобретет частица 1. Вы уже, конечно, догадываетесь, чему равна горизонтальная скорость utga; она равна wЦ(1-u2/c2) [см. уравнение (16.7)]. Кроме того, нам известно, что изменение вертикального им­пульса вертикально движущейся частицы равно

Dp=2mww

(двойка здесь потому, что движение вверх перешло в движение вниз). У частицы, движущейся косо, скорость равна v, ее компоненты равны uи wЦ(1-u2/c2), а масса ее mv. Изменение вертикального импульса этой частицы Dр'=2тvwЦ(1—u22), так как в соответствии с нашим предположением (16.8) любая компонента импульса равна произведению одноименной ком­поненты скорости на массу, отвечающую этой скорости. Но суммарный импульс равен нулю. Значит, и вертикальные импульсы должны взаимно сократиться, отношение же массы, движущейся со скоростью w, к массе, движущейся со скоростью v, должно оказаться равным

mw/mv=Ц(1-u2/c2). (16.9).

Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, mw®m0, a mv®mu. Окончательный результат таков:

Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольных w, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника

Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства при w—>0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты пред­положим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).

Фиг. 16.4. Две картины неупругого соударения тел равной массы.

Перейти на страницу:

Похожие книги

12 великих трагедий
12 великих трагедий

Книга «12 великих трагедий» – уникальное издание, позволяющее ознакомиться с самыми знаковыми произведениями в истории мировой драматургии, вышедшими из-под пера выдающихся мастеров жанра.Многие пьесы, включенные в книгу, посвящены реальным историческим персонажам и событиям, однако они творчески переосмыслены и обогащены благодаря оригинальным авторским интерпретациям.Книга включает произведения, созданные со времен греческой античности до начала прошлого века, поэтому внимательные читатели не только насладятся сюжетом пьес, но и увидят основные этапы эволюции драматического и сценаристского искусства.

Александр Николаевич Островский , Иоганн Вольфганг фон Гёте , Оскар Уайльд , Педро Кальдерон , Фридрих Иоганн Кристоф Шиллер

Драматургия / Проза / Зарубежная классическая проза / Европейская старинная литература / Прочая старинная литература / Древние книги
Волчья тропа
Волчья тропа

Мир после ядерной катастрофы. Человечество выжило, но высокие технологии остались в прошлом – цивилизация откатилась назад, во времена Дикого Запада.Своенравная, строптивая Элка была совсем маленькой, когда страшная буря унесла ее в лес. Суровый охотник, приютивший у себя девочку, научил ее всему, что умел сам, – ставить капканы, мастерить ловушки для белок, стрелять из ружья и разделывать дичь.А потом она выросла и узнала страшную тайну, разбившую вдребезги привычную жизнь. И теперь ей остается только одно – бежать далеко на север, на золотые прииски, куда когда-то в поисках счастья ушли ее родители.Это будет долгий, смертельно опасный и трудный путь. Путь во мраке. Путь по Волчьей тропе… Путь, где единственным защитником и другом будет таинственный волк с черной отметиной…

Алексей Семенов , Бет Льюис , Даха Тараторина , Евгения Ляшко , Сергей Васильевич Самаров

Фантастика / Приключения / Боевик / Славянское фэнтези / Прочая старинная литература