Читаем Эволюция физики полностью

Если мы будем рассматривать воду даже через самый мощный микроскоп, мы не сможем увидеть молекул и их движения, нарисованного нам кинетической теорией вещества. Из этого можно заключить, что если представление о воде как о совокупности частиц и правильно, то величина этих частиц лежит за пределами видимости самых лучших микроскопов. Тем не менее останемся верными теории и предположим, что она представляет последовательную картину реальности. Броуновские частицы, видимые в микроскоп, бомбардируются меньшими частицами, составляющими воду. Если бомбардируемые частицы достаточно малы, то возникает броуновское движение. Оно возникает потому, что эта бомбардировка неодинакова со всех сторон и не может быть уравновешена в силу своего хаотического и случайного характера. Таким образом, наблюдаемое движение есть результат движения ненаблюдаемого. Поведение больших частиц отражает некоторым образом поведение молекул, составляя, так сказать, увеличение столь большое, что оно становится видным через микроскоп. Хаотичный и случайный характер пути броуновских частиц отражает хаотичность пути меньших частиц, которые составляют вещество. Из сказанного мы можем заключить, что количественное изучение броуновского движения может дать нам более глубокое проникновение в кинетическую теорию вещества. Ясно, что видимое броуновское движение зависит от величины невидимых бомбардирующих молекул. Броуновского движения не было бы вовсе, если бы бомбардирующие молекулы не обладали определённым количеством энергии или, другими словами, если бы они не имели массы и скорости. Поэтому неудивительно, что изучение броуновского движения может привести к определению массы молекулы.

Благодаря трудолюбивому исследованию, теоретическому и экспериментальному, были получены количественные результаты кинетической теории. Идея, возникшая при изучении броуновского движения, была одной из тех, что привели к количественным результатам. Одни и те же результаты могут быть получены различными путями, исходя из совершенно различных предпосылок. Тот факт, что все эти методы являются опорой одного и того же воззрения, очень важен, ибо это показывает внутреннюю последовательность кинетической теории вещества.

Здесь мы напомним лишь один из многих результатов, достигнутых экспериментом и теорией. Предположим, что мы имеем один грамм самого лёгкого из всех элементов — водорода — и спрашиваем: сколько частиц в этом грамме? Ответ будет характеризовать не только водород, но и все другие газы, так как мы уже знаем, при каких условиях два газа имеют одинаковое число частиц.

Теория позволяет нам ответить на этот вопрос, исходя из известных измерений броуновского движения взвешенных частиц. Ответ представляет собой поразительно большое число: тройка, за которой следует 23 другие цифры. Число молекул в одном грамме водорода примерно равно:

300000000000000000000000.

Вообразим, что молекулы грамма водорода так возросли по своей величине, что стали видимыми через микроскоп, а их диаметр достиг одной двухтысячной сантиметра, т. е. стал таким же, как и диаметр броуновских частиц. Тогда, для того чтобы тесно уложить их друг возле друга, мы должны были бы взять ящик, каждая сторона которого имеет длину около полукилометра!

Мы легко можем подсчитать массу одной водородной молекулы, разделив единицу на указанное выше число. Ответ даёт фантастически малое число:

0,0000000000000000000000033 г,

представляющее массу молекулы водорода.

Эксперименты с броуновским движением являются лишь одними из многих независимых экспериментов, приводящих к определению этого числа, играющего чрезвычайно важную роль в физике.

В кинетической теории материи и во всех её важных достижениях мы видим осуществление общей философской программы: свести объяснение всех явлений к механическому взаимодействию между частицами материи.

Подведём итоги.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука