Читаем Эволюция физики полностью

Возможно ли объяснить тепловые явления в терминах, относящихся к движению частиц, взаимодействующих между собой с помощью простых сил? Пусть замкнутый сосуд содержит определённую массу газа, например воздуха, при определённой температуре. Нагревая воздух, мы поднимаем его температуру и таким образом увеличиваем энергию. Но как эта теплота связана с движением? Возможность такой связи внушается нам и нашим догматически принятым философским воззрением, и тем, что теплота порождается движением. Теплота должна представлять собой механическую энергию, если всякая проблема есть механическая проблема. Задача кинетической теории состоит в том, чтобы представить понятие материи именно таким путём. Согласно этой теории, газ есть совокупность огромного числа частиц, или молекул, движущихся во всех направлениях, соударяющихся друг с другом и изменяющих своё направление движения после каждого столкновения. В таком газе должна существовать средняя скорость молекул, подобно тому как в большом человеческом обществе существует средний возраст или средний доход. Поэтому должна существовать также и средняя кинетическая энергия частицы. Чем больше теплоты в данном сосуде, тем больше средняя кинетическая энергия.

Таким образом, согласно этой картине, теплота не является специфической формой энергии, отличной от механической: она есть не что иное, как именно кинетическая энергия молекулярного движения. Любой определённой температуре соответствует определённая средняя кинетическая энергия молекулы. В самом деле, это не произвольное предположение. Мы вынуждены рассматривать кинетическую энергию молекулы как меру температуры газа, если мы хотим создать последовательную механистическую картину строения вещества.

Эта картина — нечто большее, чем игра воображения. Можно показать, что кинетическая теория газов не только находится в согласии с экспериментом, но и действительно приводит к более глубокому пониманию фактов. Это можно проиллюстрировать несколькими примерами.

Пусть мы имеем сосуд, закрытый поршнем, который может свободно двигаться (рис. 22). Сосуд содержит определённое количество газа, которое должно сохраняться при неизменной температуре. Если поршень вначале покоится в некотором положении, то его можно поднять вверх, снимая нагрузку, или, добавляя её, опустить. Чтобы сдвинуть поршень вниз, нужно употребить силу, действующую против внутреннего давления газа. Каков механизм этого внутреннего давления, согласно кинетической теории? Огромное число частиц, составляющих газ, движется во всех направлениях. Они бомбардируют все стенки и поршень, отскакивая назад, подобно мячам, брошенным в стену. Эта непрерывная бомбардировка большого числа частиц поддерживает поршень на определённой высоте, сопротивляясь силе тяжести, действующей по направлению вниз на поршень и нагрузку. В одном направлении действует постоянная сила тяготения, а в другом — очень много беспорядочных ударов молекул. Конечный результат действия на поршень всех этих малых беспорядочных сил должен быть равен результату действия силы тяготения, если сохраняется равновесие.

Рис. 22

Предположим, что поршень сдвинули вниз так, что он сжал газ до некоторой части его первоначального объёма, скажем до половины, а температура его осталась неизменной. Что должны мы ожидать в этом случае, согласно кинетической теории? Будет ли сила, происходящая от бомбардировки молекул, эффективнее, чем прежде, или нет? Теперь частицы заполняют сосуд теснее, чем прежде. Хотя средняя кинетическая энергия по-прежнему та же самая, удары частиц о поршень теперь происходят чаще, а стало быть, полная сила будет больше. Из этой картины, представленной кинетической теорией, ясно, что, для того чтобы удержать поршень в его нижнем положении, требуется большая нагрузка. Этот простой экспериментальный факт хорошо известен, но предсказание его логически вытекает из кинетического взгляда на вещество.

Рассмотрим другой эксперимент. Возьмём два сосуда, содержащие одинаковые объёмы различных газов, скажем водорода и азота, оба при одинаковой температуре. Предположим, что оба сосуда закрыты одинаковыми поршнями, на которые наложены равные нагрузки. Короче говоря, это означает, что оба газа имеют равные объёмы, температуру и давление. Так как температура одинакова, то, согласно теории, такова же и средняя кинетическая энергия частиц. Так как давления одинаковы, то оба поршня бомбардируются с одной и той же общей силой. В среднем каждая частица обладает одной и той же энергией, и оба сосуда имеют равный объём. Поэтому, хотя газы химически и различны, число молекул в каждом сосуде должно быть одинаковым.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука