Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Если вы – ботаник, с вашей точки зрения физики проделали восхитительную работу. Классификация элементарных частиц в пределах Стандартной модели красою не блещет, хоть она и есть победа силы предсказания. К примеру, у элементарных частиц материи, в отличие от калибровочных частиц, есть семейства. В каждом семействе – по четыре частицы: электро-ноподобная, нейтриноподобная и два кварка. Одно такое семейство состоит из обычного электрона и нейтрино, а также из двух кварков, которые суть знакомые нам протон и нейтрон. Соответствующие частицы из двух других семейств отличаются только по массе – в этих «экзотических» семействах частицы значительно увесистее. Стандартная модель отражает эту структуру, однако она включена в теорию без всяких объяснений. Почему семейств три и почему по четыре члена в каждой? Почему массы такие, какие они есть? Стандартная модель не имеет ответа ни на один подобный вопрос.

Сила каждого взаимодействия – тоже данность без объяснения, зашифрованная в цифрах под названием константа связи. Реакция частицы на воздействие силы характеризуется количественно через заряд — обобщение от электрического заряда. Обыкновенно некоторая заданная частица несет более одного типа заряда, т. е. участвует в более чем одном виде взаимодействия. Эти заряды тоже не имеют объяснения в рамках теории.

Если у Ферми возникали сложности с запоминанием названий элементарных частиц, Стандартная модель все лишь усугубила. Чтобы запомнить уравнения этой модели, ему пришлось бы выучить значения девятнадцати невыводимых параметров. И это вам не симпатичные числа, которыми бы мог гордиться Пифагор, а уродцы с именами вроде угла Кабиббо и значениями типа 1,167391 х 10–5 (это константа связи Ферми в ГэВ-2) [277] . Книга Бытия гласит: «Да будет свет. И стал свет» [278] . Согласно современной физике, Бог к тому же старательно настроил постоянную тонкой структуры так, чтобы она в точности равнялась 1/137,035997650 (плюс-минус несколько миллиардных долей).

Не вдаваясь в философию науки, словосочетание «фундаментальная теория» содержит нечто, словно подразумевающее, будто десятки исследователей не должны зарабатывать себе на жизнь, измеряя девятнадцать «фундаментальных» параметров до точностей в семь десятичных знаков. Возникает желание похлопать этих теоретиков по плечу и спросить: «Вы вообще слыхали, что был такой мужик, звали Птолемеем?» При должной сноровке любой смышленый ученый может подогнать что угодно под любые данные.

Теоретики-струнники протестуют против того, чтобы эту модель считали фундаментальной. Они надеются, что однажды смогут ее вывести. Как и теоретики S-матрицы, но совсем не как теоретики поля, они добиваются результата, при котором не придется определять не только вводные параметры, но даже и структурные, вроде числа измерений пространства. Как и Чу, они нацеливаются найти теорию, полностью определяемую из общих принципов. Они верят, что из нее смогут понять происхождение и силу всех взаимодействий, виды и свойства частиц, структуру самого пространства. И в их теории – как и в мечте Чу – одна частица на все годится. Разница лишь в том, что, согласно их теории, частица есть струна.

Струна сделана из ничего, поскольку определение материального состава предполагает наличие некой более тонкой структуры, которой у струн нет. И вот поди ж ты – из них сделано все. При длине в 10–33 сантиметра они надежно защищены от наших взоров – на 1016. В таблице проверки зрения они, может, и ориентированы-то и горизонтально, и вертикально, и по диагонали. Но даже наш самый мощный микроскоп провалит эту проверку зрения. «Вниз? Вверх? В стороны?.. Простите, доктор, вижу одни точки».

Сокрытость струн из-за их крошечных размеров не должна удивлять: в конце концов их же вывели из теории, а не из наблюдений. Но определение степени их сокрытости смерти подобно. Согласно различным оценкам, ускоритель, потребный для прямого засечения струны экспериментально должен быть размерами от нашей галактики до всей Вселенной. Историк, выкопав потрепанный экземпляр этой книги в 3000 году, может, и хихикнет над такими оценками: к тому времени мы, вероятно, уже научимся разглядывать их, смешав вермут с водкой (в правильных пропорциях). Однако пока прямое наблюдение за струнами – пустой разговор.

В квантовой механике волны и частицы – дуальные аспекты одного и того же явления. В квантовой теории поля частицы и материи, и энергии считаются возбуждениями различных квантовых полей. Это верно и для теории струн, однако в ней есть лишь одно поле. Все частицы возникают из-за вибрационных возбуждений одного вида элементарных объектов: струн.

Представьте гитарную струну, натяжением настроенную до нужного напряжения. Музыкальные ноты такой струны называются модами возбуждения – в отличие от состояния струны в покое. В акустике они еще называются высшими гармониками. В струнной теории они проявляются как разные частицы.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное