Как-то ночью, после работы над этой главой, битва между Эйнштейном и Гейзенбергом явила себя во сне. Сон начался с того, что пришел Николай в образе Эйнштейна и показал мне кое-какие теоретические выкладки, которые он накропал цветным карандашиком в своем школьном альбоме по рисованию:
…Диалог продолжался в том же духе, покуда я не проснулся весь дрожа. (Это знак! Не следовало ложиться спать, не дописав главу.)
Одновременное применение принципа неопределенности и общей теории относительности к малым областям пространства приводит к фундаментальному противоречию с теорией относительности вообще. Кто прав – Гейзенберг или Эйнштейн? Если прав Эйнштейн, квантовая теория неверна. Но история с квантами не похожа на ошибочную: эксперимент и теория сходятся с точностью выше миллионной доли. Корнеллский физик Тоитиро Киносита, один из ведущих в квантовой электродинамике ученых, называет это «самой достоверной теорией на Земле, а может, и во всей Вселенной – в зависимости от того, сколько в ней инопланетян» [267] .
Если квантовая теория верна, значит, ошибочна теория относительности. Да, у теории относительности были свои поводы торжествовать. Однако есть нюанс. Победы теории относительности связаны с наблюдением макроскопических явлений – со светом, движущимся мимо Солнца, или с летающими вокруг Земли часовыми механизмами. Общая теория относительности в малых масштабах элементарных частиц пока еще не проверена. Измерять воздействие сил тяготения на них невозможно – их массы для этого слишком малы. Поэтому физики предпочитают ставить под вопрос резонность теории относительности, особенно эйнштейновы допущения о приблизительной плоскости мельчайших областей пространства. Быть может, необходимо пересмотреть теорию Эйнштейна в отношении ультрамикроскопических областей.