Примерно в то же время Лоренц, по-прежнему размышлявший над результатам майкельсоновых измерений, пришел к аналогичному заключению. Правда, Лоренц, ведущий физик-теоретик 1890-х, попытался соорудить объяснение [210] сжатию тел, основанное на том, что молекулярные взаимодействия осуществляются через эфир. (К тому моменту, стараясь спасти идею эфира, ученые перестали считать его не подверженным влиянию физических сил.) Без физического объяснения этого сжатия такое объяснение выглядело поделкой на скорую руку, вроде эпициклов Птолемея [211] . И все равно попытки таким способом сформулировать толкование потерпели крах – особенно потому, что силы, которые Лоренцу пришлось постулировать, плохо вязались с ньютоновской механикой.
К 1904-му за год до первой статьи Эйнштейна по теории относительности, Лоренц и другие сделали несколько занятных открытий, но не оценили их следствий. Новая теория Лоренца вводила разницу между двумя видами времени: «местного» и «вселенского» (хотя вселенское время у него считалось предпочтительным). Лоренц также осознал, что движение электрона сквозь эфир должно влиять на значение его массы, и это воздействие экспериментально подтвердил физик Вальтер Кауфман. Пуанкаре задался вопросом: может ли скорость света быть предельной скоростью во Вселенной (это закономерность, вытекающая из теорий сжатия)? Он также рассуждал о субъективности пространства и времени: «Нет абсолютного времени; утверждение, что две длительности равны, само по себе не имеет смысла… у нас нет даже прямых догадок об одновременности двух событий, происходящих в разных местах…» [212] Граница между временными вещами и вневременной Вселенной, в которой они существуют, начала разрушаться. Какая же из всего этого должна была возникнуть геометрия?
Альберту Эйнштейну потребовалось сформулировать простую теорию, которая объяснила наблюдаемое поведение света, движущегося в пространстве. Пространство и время слились навек, а их тетушка геометрия стала существом более чем эксцентричным.
Глава 24. Технический эксперт-стажер третьего класса
Проезжая в 1805 году мимо дома Гаусса в Гёттингене, Наполеон возвращался после убедительной победы при Ульме. Император пощадил Гёттинген из уважения к Гауссу, однако и место его победы вскоре станет столь же почитаемым: там родится один из, быть может, величайших физиков в истории человечества – Альберт Эйнштейн. Случилось это в 1879-м – в год смерти Максвелла.
В отличие от Гаусса, Эйнштейн вундеркиндом не был [213] . Заговорил он поздно – утверждают, в три года. В общем, тихий и замкнутый ребенок. Его учили на дому – до того дня, когда он вдруг закатил истерику и швырнул в учителя стулом. В начальной школе успехи его были так себе. Временами все получалось, но некоторые учителя держали его за бестолочь или даже за умственно отсталого. К сожалению – и тогда, и ныне – зубрежку считали ключевой частью школьных занятий, а зубрить Эйнштейн никогда не умел. Учителя всегда с готовностью поощряли детей, которые мгновенно кричали с места: «Север!» – в ответ на вопрос, куда указывает стрелка компаса, но не ценили ребенка, который задумывается над вопросом – как это бывало с пятилетним Эйнштейном, – какие такие силы заставляют стрелку двигаться. Нельзя сказать, что немецкие школы никак не развились со времен Бюттнера и Гаусса. В наказание за неправильный ответ детей больше не пороли – современные технологии предписывали резко бить по костяшкам пальцев. Скрытый за эйнштейновыми небыстрыми ответами гений был всего лишь стратегией испуганного ребенка: боясь наказания, он всегда по нескольку раз проверял ответ в уме, прежде чем выпаливать вслух.
На школьных собраниях родители девятилетнего Альберта, вероятно, выслушивали что-нибудь вроде: юный Альберт хорош в математике и латыни, но сильно отстает по всем остальным предметам. Легко представить сомнения его учителей и беспокойство родителей. Выйдет ли когда-нибудь толк из этого четвероклашки? К тринадцати годам Эйнштейн уже демонстрировал небывалые способности к математике. Он взялся за более сложные математические знания вместе с другом постарше и с дядей. Кроме того – изучал работы Канта, особенно его воззрения на время и пространство. Кант, может, и ошибался насчет роли интуиции в математических доказательствах, однако его соображения о том, что время и пространство суть плоды нашего восприятия, заинтересовали Эйнштейна еще подростком. И хотя человеческая психология тут не при чем, субъективность измерения пространства и времени и дали относительности ее название.
К 1895 году молодой Эйнштейн уже знал об эксперименте Майкельсона-Морли, о работах Физо и Лоренца. И хотя тогда Эйнштейн еще принимал концепцию эфира, он понял: независимо от того, с какой скоростью движешься, догнать световую волну не удастся. Относительность уже была на подходе.