Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Майкельсон маленьким источником света генерировал узкий луч и направлял его на делитель. Поскольку луч ведет себя как волна, значит, если после воссоединения один луч вернулся быстрее другого, колебания этих двух лучей не останутся в одинаковой фазе, т. е. не будут двигаться «в ногу». В результате произойдет интерференция, а из нее можно вычислить временну́ю разницу и определить скорость движения в эфире, как и ранее. (Если б нам не нужен был этот самый интерференционный эффект, можно было бы провести такой эксперимент, просто-напросто посветив между двумя точками в разные стороны, и сравнить время движения света.)

Майкельсон не мог, конечно, надеяться на то, что два рукава его аппарата будут равны с точностью до длины волны или что ему удастся померить их длину с такой точностью. Более того, у него не было никакой возможности узнать, под каким углом его установка находится по отношению к вектору скорости движения эфира. Майкельсон умно разрешил эти затруднения, поворачивая аппарат на 90° и измеряя сдвиги интерференционной полосы по мере того, как лучи «менялись ролями», не прибегая к измерению самих интерференционных полос.

Для развития боксерских умений Майкельсону далеко ехать не потребовалось, а вот его судьба как ученого сложилась иначе. В 1880 году он получил разрешение военно-морского начальства на путешествие через Атлантику – продолжить образование. Подобные дотации были в те времена довольно распространены – эдакая попытка американского правительства украсить военную мускулатуру налетом интеллекта. Майкельсону тогда не исполнилось тридцати, но, оказавшись в Берлине и Париже, он уже разработал свою гениальную модель интерферометра.

Майкельсон предложил схему установки, которую требовалось собрать с ювелирной точностью: отклонение в одну тысячную миллиметра в длине одного рукава относительно другого ставило под угрозу любые замеры. Если температура в одном рукаве оказалась бы выше всего на одну сотую градуса, эксперимент Майкельсона пошел бы прахом. Прежде чем начать, Майкельсон укутал рукава аппарата бумагой – чтобы предотвратить температурные перепады, – а также обложил все приборы тающим льдом, чтобы поддерживать единую температуру в 0°С. Наконец, его установка обладала такой чувствительностью, что регистрировала возмущение, возникавшее от шагов по мостовой в ста ярдах от лаборатории.

Такие приборы стоят недешево. Майкельсон хотел изготовить латунную раму у знаменитых немецких умельцев приборостроения Шмидта и Хенша, но такой роскоши позволить себе не мог. По счастью, один его земляк, американец, за несколько лет до этого стяжал славу и состояние за изобретение «говорящего телеграфа» – приборчика, ныне называемого телефоном. В 1880 году его изобретатель, Александр Грэм Белл, уже трудился над новым проектом – видеофоном. Белл нанял Шмидта и Хенша строить себе исследовательские приборы и имел под это особый бюджет. Как раз на средства из него и соорудили аппарат Майкельсона.

Майкельсон осуществил свой эксперимент в немецком Потсдаме в апреле 1881 года. Вообще никакой разницы во времени прохождения света сквозь пространство он не обнаружил. Что это означало? Перед Майкельсоном не стояла цель разоблачить или даже проверить гипотезу эфира – он желал измерить нашу скорость в эфире. Ничего не обнаружив, он не сделал вывод, что эфира не существует, – он лишь заключил, что мы неким манером в нем не движемся. Как такое может быть: Земля не движется сквозь эфир? Один вариант ответа дал Френель и его вроде бы подтвердил, хоть и неточно, Физо: теория захвата эфира. В любом случае, ни сам Майкельсон, ни все остальные не восприняли полученные результаты как угрозу существованию эфира. Сэр Уильям Томсон (лорд Келвин), приехав в 1884 году в Соединенные Штаты [205] , выразился очень прямо: «…светоносный эфир есть… единственное вещество, в котором мы можем быть в динамике уверены. Лишь в этом мы убеждены, такова подлинность и состоятельность светоносного эфира». В конце концов электромагнитная теория Максвелла требовала наличия волн, а волнам нужна среда. Большинство физиков не обратило на опыт Майкельсона никакого внимания. Позднее он писал: «Я неоднократно пытался заинтересовать моих ученых друзей в этом эксперименте, но все тщетно… Меня обескуражил такой недостаток внимания к нему» [206] .

* * *
Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное