Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Любая карта – своего рода график. К примеру, «нормальная» географическая карта отражает названия городов и стран, а также, быть может, еще кое-какие данные – в зависимости от их географического положения. Греки и прочие, не отдавая себе в этом отчета, применяли такие графики – карты – тысячи лет. Неясно, отдавал ли себе отчет и Орем, но ключевой вопрос он все-таки затронул: имеет ли какой-либо географический или геометрический смысл кривая или иная геометрическая форма, образованная графиком, построенным на некотором множестве данных, т. е. функция?

Если построить график зависимости степени возвышенности земли от местоположения, получится знакомая нам топографическая карта, и ее связь с реальной географией очевидна. Гора в форме уточки на карте местности будет отражена фигурой уточки. А вот если изобразить зависимость погоды от местоположения, получится тоже некоторая поверхность, но не буквальная форма погоды, а некая геометрическая фигура, смысл которой можно изучить. Соотнеся таким образом функции с геометрией, мы получаем описание взаимосвязи между определенными типами функций и типами форм. Изучение линий и поверхностей превращается, стало быть, в изучение тех или иных функций, и наоборот; вот он, союз геометрии и числа. И именно этот шаг и делает изобретение Оремом графиков таким важным для математики.

Сила графиков, применяемых не-математиками к анализу закономерностей в данных, обусловлена все той же связью чисел с геометрией. Человеческий ум легко распознает некоторые простые формы – например, линии и окружности. Разглядывая некую совокупность точек, мы пытаемся затолкать их в эти привычные формы и в итоге можем заметить геометрические закономерности, если данные представлены в виде графика, хотя закономерности в тех же данных, представленных таблицей, можно запросто проглядеть. Искусство построения графиков в этом ключе проанализировано в классическом труде Эдварда Тафта «Наглядное представление количественной информации».

Рассмотрим три довольно скучные колонки чисел:

В каждой представлены некоторые замеры, т. е. каждая величина имеет погрешность эксперимента. Первый набор чисел назовем данными Алексея – допустим, их получил студент по имени Алексей, и, аналогично, второй и третий наборы – Николая и мамы. Если представить эти данные как функцию времени, возникнет ли какая-нибудь закономерность, а если возникнет, то какая? Вот в чем вопрос.

Глядя на числа в таблице, усмотреть закономерности непросто, но стоит построить графики, все немедленно проясняется. График, построенный на данных Алексея, – прямая, если не считать точки с координатой времени 2, где Алексей либо чихнул, либо отвлекся на приятеля и его компьютерную игру.

Данные Николая укладываются в хорошо нам известную форму под названием парабола, которая описывает, например, зависимость энергии пружины от длины ее растяжения или высоты положения летящего пушечного ядра от пройденного расстояния. Математически говоря, эта форма описывается функцией, где измеряемая величина возрастает с квадратом времени (или расстояния). Мамин график есть верхняя правая четверть окружности, одной из самых распространенных форм в нашей жизни, и, как и в случае Алексея, одной из основных евклидовых фигур. Но вот из одних лишь записанных цифр это куда как не очевидно.

Орем применил эту новую мощную геометрическую методику для доказательства одного из знаменитейших законов физики того времени – мертонского правила [105] . Между 1325 и 1359 годами группа математиков из оксфордского Мертон-Колледжа, предложила понятийный аппарат для количественного описания движения. В античных дискуссиях расстояние и время рассматривались как количества, которые можно описать численно, однако «быстроту», она же «скорость», никто не считал.

Данные принимают форму

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное