Но эта модель сразу вызывает несколько вопросов. Первый вопрос – о том, чему равен промежуток времени, в течение которого очередная связка «протон-электрон» является валентной, и по истечении которого производится переключение статуса «валентной» на следующую связку. Мы полагаем, что этот промежуток времени является не характеристической величиной, а монотонной функцией температуры: по мере увеличения температуры, переключения валентных связок происходят всё чаще. Для оценки периода этих переключений при обычных температурах, используем следующие соображения. Факт ничтожности количества свободных электронов в металлах (см. выше) позволяет сделать вывод, что их вклад в теплопроводность также ничтожен. За высокую теплопроводность металлов ответственны, на наш взгляд, всё те же миграции химических связей в металлическом образце, вместе с которыми мигрируют кванты теплового возбуждения. Странным образом, в науке принято считать, что, при лазерной обработке металлического образца, температура в зоне термовоздействия повышается в результате действия лазерного излучения на свободные электроны. Так, читаем: «
Второй вопрос – следующий. Если атомы металлов представляют собой этакие «трансформеры» с переключаемыми направлениями ненасыщенных валентностей, то ассоциации возможны лишь из достаточного числа таких атомов. А именно, представляется весьма проблематичной стабильность двухатомных молекул металлов. Согласно же традиционным представлениям, такие молекулы должны быть стабильны настолько, насколько это позволяет одинарная ковалентная связь. Какой из этих двух подходов лучше согласуется с практикой? В литературе можно найти осторожные намёки на то, что двухатомные молекулы металлов – почему-то нестабильны. А вот и прямой текст: «
Таким образом, модель атомов-«трансформеров» с переключаемыми направлениями валентностей, а также модель динамических структур из таких атомов, не находятся в очевидном противоречии с опытом. Добавим, что о динамическом характере структуры металлов, которая держится на переключаемых химических связях, почти прямо свидетельствует следующий поразительный факт. В раскалённой стальной проволоке, к концам которой приложена постоянная разность потенциалов, «углерод перемещается к катоду. При 1065оС подвижность ионов углерода равна 1.610-9 (м/с)/(в/м)» [П1] – это видно на травлёных шлифах!