Читаем Этот «цифровой» физический мир полностью

Но эта модель сразу вызывает несколько вопросов. Первый вопрос – о том, чему равен промежуток времени, в течение которого очередная связка «протон-электрон» является валентной, и по истечении которого производится переключение статуса «валентной» на следующую связку. Мы полагаем, что этот промежуток времени является не характеристической величиной, а монотонной функцией температуры: по мере увеличения температуры, переключения валентных связок происходят всё чаще. Для оценки периода этих переключений при обычных температурах, используем следующие соображения. Факт ничтожности количества свободных электронов в металлах (см. выше) позволяет сделать вывод, что их вклад в теплопроводность также ничтожен. За высокую теплопроводность металлов ответственны, на наш взгляд, всё те же миграции химических связей в металлическом образце, вместе с которыми мигрируют кванты теплового возбуждения. Странным образом, в науке принято считать, что, при лазерной обработке металлического образца, температура в зоне термовоздействия повышается в результате действия лазерного излучения на свободные электроны. Так, читаем: «Поглощение света металлом приводит прежде всего к возрастанию энергии электронного газа» [А1]. Но ведь свободный электрон, по определению, не может ни поглотить, ни излучить фотон – у электрона нет необходимых для этого внутренних степеней свободы. На наш взгляд, лазерное воздействие здесь производит возбуждение поверхностных атомов, которые – пока не произошла их ионизация – способны передавать возбуждение соседям через переключения химических связей. Тогда размер зоны термовоздействия должен зависеть от соотношения между длительностью лазерного импульса и периода переключений химических связей – и, значит, об этом периоде можно судить по результатам обработки металлов короткими и сверхкороткими лазерными импульсами. Известно (см., например, [К7,К8]), что при одной и той же рабочей плотности мощности, превышающей порог испарения, при длительности импульсов ~1 нс (и менее) происходит практически полное испарение материала – без образования жидкой фазы, которая образуется при более длинных импульсах. Отсюда можно сделать вывод о том, что, при комнатной температуре, период переключений химических связей в конструкционных металлах имеет величину ~10-9-10-10 с. С этой «контрольной точкой», соответствующей комнатной температуре, согласуется полученная нами квадратичная зависимость частоты переключений направленных валентностей у атомов металлов от абсолютной температуры [Г6].

Второй вопрос – следующий. Если атомы металлов представляют собой этакие «трансформеры» с переключаемыми направлениями ненасыщенных валентностей, то ассоциации возможны лишь из достаточного числа таких атомов. А именно, представляется весьма проблематичной стабильность двухатомных молекул металлов. Согласно же традиционным представлениям, такие молекулы должны быть стабильны настолько, насколько это позволяет одинарная ковалентная связь. Какой из этих двух подходов лучше согласуется с практикой? В литературе можно найти осторожные намёки на то, что двухатомные молекулы металлов – почему-то нестабильны. А вот и прямой текст: «двухатомные молекулы металлов… в обычных условиях неустойчивы и образуются лишь при низких температурах, да и «живут» короткое время» [ВЕБ3]. Или ещё: «В парообразном состоянии металлы одноатомны» [Ф1]. Отчего же атомы металлов, имея ненасыщенные валентности, не образуют стабильных двухатомных молекул? В рамках традиционного подхода, эта аномалия не нашла разумного объяснения, тогда как наш подход эту аномалию легко объясняет. Заметим, что весьма тонкие эксперименты удаётся проводить с двухатомными молекулами металлов при экстремально низких температурах – например, с димерами цезия при 50-100 нанокельвинах [К6]. Мы полагаем, что, при таких низких температурах, период переключений валентных связок настолько велик, что образовавшийся димер сохраняет свою конфигурацию в течение всего времени зондирования.

Таким образом, модель атомов-«трансформеров» с переключаемыми направлениями валентностей, а также модель динамических структур из таких атомов, не находятся в очевидном противоречии с опытом. Добавим, что о динамическом характере структуры металлов, которая держится на переключаемых химических связях, почти прямо свидетельствует следующий поразительный факт. В раскалённой стальной проволоке, к концам которой приложена постоянная разность потенциалов, «углерод перемещается к катоду. При 1065оС подвижность ионов углерода равна 1.610-9 (м/с)/(в/м)» [П1] – это видно на травлёных шлифах!

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука