Укажем на ещё один факт, сокрушительный для концепции газа свободных электронов в металлах. Этим фактом, проливающим свет на природу связей между атомами металла, является сводка средних величин междуатомных расстояний в металлических кристаллах – которые легко рассчитать на основе справочных значений атомных масс и плотностей. Отношения этих междуатомных расстояний к удвоенным значениям экспериментальных атомных радиусов для металлов близки к единице [Г5]. На наш взгляд, это свидетельствует о том, что кристаллическая решётка металла формируется при непременном участии самых внешних электронов,
На первый взгляд, химические связи не могут обеспечить металлическую структуру. Ведь если у атома имеется всего один валентный электрон, то он может образовать одну химическую связь с соседним атомом, тогда как для формирования жёсткой трёхмерной решётки требуется, как минимум, три связи на атом. Конечно же, атом с единственным валентным электроном не может образовать три связи одновременно. Но мы полагаем, что он может образовывать их попеременно, связываясь с соседями по очереди. На наш взгляд, в этом и заключается главный секрет кристаллической структуры металлов: она является динамической, будучи обусловлена попеременными переключениями химических связей между соседними атомами. Тогда мы должны пояснить, как работает механизм, который обеспечивает эти переключения химических связей.
Рассмотрим случай металла с наименьшим возможным атомным номером – т.е. случай атома лития, у которого три электрона, из которых только один, валентный, может участвовать в образовании текущей химической связи. Валентный электрон у лития является самым слабо связанным из трёх, и его расстояние от ядра – наибольшее. Для обеспечения поочерёдных связей с соседними атомами, направленность валентной связки «протон-электрон» у атома лития должна скачкообразно изменяться. Нам представляется совершенно неправдоподобным, чтобы такие скачки осуществлялись через скачкообразные перемещения той области удержания, в которой удерживается один и тот же валентный электрон. Гораздо правдоподобнее выглядит допущение о том, что каждая из трёх связок «протон-электрон» у атома лития становится валентной по очереди – подчиняясь программному управлению, которое по очереди останавливает колебания зарядового разбаланса (5.4) в действовавшей валентной связке и начинает эти колебания в следующей связке, превращая её в валентную. Такие переключения статуса «валентной связки» не противоречат закону сохранения энергии. Что касается энергии возбуждения, соответствующей колебаниям зарядового разбаланса, то она всего лишь «перебрасывается» из предыдущей связки в следующую. Но этим дело не ограничивается. Междуатомные расстояния в решётке металла близки к удвоенному атомному радиусу (см. выше). Это означает, что очередная связка «протон-электрон», приобретающая статус валентной, заодно приобретает расклад энергий и размер, который имеет атомарная связка с внешним, самым слабо связанным электроном. Энергетически это проявляется как внутриатомный «переброс» кванта: сильно связанная пара «протон-электрон» становится связанной слабее, и наоборот. В итоге отдельный атом лития представляется нам как динамическая конструкция, у которой три электрона поочерёдно «вдвигаются и выдвигаются», причём самый «выдвинутый» электрон оказывается валентным. Из таких атомов, на наш взгляд, вполне может образоваться кристаллическая решётка, которая держится на переключаемых, мигрирующих химических связях. Как следует из такой модели, металлическая структура может образоваться лишь из многоэлектронных атомов – и, действительно, все попытки получения «металлического водорода» оказались безуспешными.